Metamath Proof Explorer


Theorem cardval

Description: The value of the cardinal number function. Definition 10.4 of TakeutiZaring p. 85. See cardval2 for a simpler version of its value. (Contributed by NM, 21-Oct-2003) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypothesis cardval.1
|- A e. _V
Assertion cardval
|- ( card ` A ) = |^| { x e. On | x ~~ A }

Proof

Step Hyp Ref Expression
1 cardval.1
 |-  A e. _V
2 numth3
 |-  ( A e. _V -> A e. dom card )
3 cardval3
 |-  ( A e. dom card -> ( card ` A ) = |^| { x e. On | x ~~ A } )
4 1 2 3 mp2b
 |-  ( card ` A ) = |^| { x e. On | x ~~ A }