| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardon |
|- ( card ` A ) e. On |
| 2 |
1
|
oneli |
|- ( x e. ( card ` A ) -> x e. On ) |
| 3 |
2
|
pm4.71ri |
|- ( x e. ( card ` A ) <-> ( x e. On /\ x e. ( card ` A ) ) ) |
| 4 |
|
cardsdomel |
|- ( ( x e. On /\ A e. dom card ) -> ( x ~< A <-> x e. ( card ` A ) ) ) |
| 5 |
4
|
ancoms |
|- ( ( A e. dom card /\ x e. On ) -> ( x ~< A <-> x e. ( card ` A ) ) ) |
| 6 |
5
|
pm5.32da |
|- ( A e. dom card -> ( ( x e. On /\ x ~< A ) <-> ( x e. On /\ x e. ( card ` A ) ) ) ) |
| 7 |
3 6
|
bitr4id |
|- ( A e. dom card -> ( x e. ( card ` A ) <-> ( x e. On /\ x ~< A ) ) ) |
| 8 |
7
|
eqabdv |
|- ( A e. dom card -> ( card ` A ) = { x | ( x e. On /\ x ~< A ) } ) |
| 9 |
|
df-rab |
|- { x e. On | x ~< A } = { x | ( x e. On /\ x ~< A ) } |
| 10 |
8 9
|
eqtr4di |
|- ( A e. dom card -> ( card ` A ) = { x e. On | x ~< A } ) |