Step |
Hyp |
Ref |
Expression |
1 |
|
cases.1 |
|- ( ph -> ( ps <-> ch ) ) |
2 |
|
cases.2 |
|- ( -. ph -> ( ps <-> th ) ) |
3 |
|
exmid |
|- ( ph \/ -. ph ) |
4 |
3
|
biantrur |
|- ( ps <-> ( ( ph \/ -. ph ) /\ ps ) ) |
5 |
|
andir |
|- ( ( ( ph \/ -. ph ) /\ ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ps ) ) ) |
6 |
1
|
pm5.32i |
|- ( ( ph /\ ps ) <-> ( ph /\ ch ) ) |
7 |
2
|
pm5.32i |
|- ( ( -. ph /\ ps ) <-> ( -. ph /\ th ) ) |
8 |
6 7
|
orbi12i |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ps ) ) <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) ) |
9 |
4 5 8
|
3bitri |
|- ( ps <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) ) |