Metamath Proof Explorer


Theorem cases

Description: Case disjunction according to the value of ph . (Contributed by NM, 25-Apr-2019)

Ref Expression
Hypotheses cases.1
|- ( ph -> ( ps <-> ch ) )
cases.2
|- ( -. ph -> ( ps <-> th ) )
Assertion cases
|- ( ps <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) )

Proof

Step Hyp Ref Expression
1 cases.1
 |-  ( ph -> ( ps <-> ch ) )
2 cases.2
 |-  ( -. ph -> ( ps <-> th ) )
3 exmid
 |-  ( ph \/ -. ph )
4 3 biantrur
 |-  ( ps <-> ( ( ph \/ -. ph ) /\ ps ) )
5 andir
 |-  ( ( ( ph \/ -. ph ) /\ ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ps ) ) )
6 1 pm5.32i
 |-  ( ( ph /\ ps ) <-> ( ph /\ ch ) )
7 2 pm5.32i
 |-  ( ( -. ph /\ ps ) <-> ( -. ph /\ th ) )
8 6 7 orbi12i
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ ps ) ) <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) )
9 4 5 8 3bitri
 |-  ( ps <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) )