| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm3.4 |
|- ( ( ph /\ ps ) -> ( ph -> ps ) ) |
| 2 |
|
pm2.24 |
|- ( ph -> ( -. ph -> ch ) ) |
| 3 |
2
|
adantr |
|- ( ( ph /\ ps ) -> ( -. ph -> ch ) ) |
| 4 |
1 3
|
jca |
|- ( ( ph /\ ps ) -> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| 5 |
|
pm2.21 |
|- ( -. ph -> ( ph -> ps ) ) |
| 6 |
5
|
adantr |
|- ( ( -. ph /\ ch ) -> ( ph -> ps ) ) |
| 7 |
|
pm3.4 |
|- ( ( -. ph /\ ch ) -> ( -. ph -> ch ) ) |
| 8 |
6 7
|
jca |
|- ( ( -. ph /\ ch ) -> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| 9 |
4 8
|
jaoi |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
| 10 |
|
pm2.27 |
|- ( ph -> ( ( ph -> ps ) -> ps ) ) |
| 11 |
10
|
imdistani |
|- ( ( ph /\ ( ph -> ps ) ) -> ( ph /\ ps ) ) |
| 12 |
11
|
orcd |
|- ( ( ph /\ ( ph -> ps ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 13 |
12
|
adantrr |
|- ( ( ph /\ ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 14 |
|
pm2.27 |
|- ( -. ph -> ( ( -. ph -> ch ) -> ch ) ) |
| 15 |
14
|
imdistani |
|- ( ( -. ph /\ ( -. ph -> ch ) ) -> ( -. ph /\ ch ) ) |
| 16 |
15
|
olcd |
|- ( ( -. ph /\ ( -. ph -> ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 17 |
16
|
adantrl |
|- ( ( -. ph /\ ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 18 |
13 17
|
pm2.61ian |
|- ( ( ( ph -> ps ) /\ ( -. ph -> ch ) ) -> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
| 19 |
9 18
|
impbii |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |