Description: Version of cases expressed using if- . Case disjunction according to the value of ph . One can see this as a proof that the two hypotheses characterize the conditional operator for propositions. For the converses, see ifptru and ifpfal . (Contributed by BJ, 20-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | casesifp.1 | |- ( ph -> ( ps <-> ch ) ) |
|
casesifp.2 | |- ( -. ph -> ( ps <-> th ) ) |
||
Assertion | casesifp | |- ( ps <-> if- ( ph , ch , th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casesifp.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | casesifp.2 | |- ( -. ph -> ( ps <-> th ) ) |
|
3 | 1 2 | cases | |- ( ps <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) ) |
4 | df-ifp | |- ( if- ( ph , ch , th ) <-> ( ( ph /\ ch ) \/ ( -. ph /\ th ) ) ) |
|
5 | 3 4 | bitr4i | |- ( ps <-> if- ( ph , ch , th ) ) |