| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cat1lem.1 |
|- C = ( SetCat ` U ) |
| 2 |
|
cat1lem.2 |
|- ( ph -> U e. V ) |
| 3 |
|
cat1lem.3 |
|- B = ( Base ` C ) |
| 4 |
|
cat1lem.4 |
|- H = ( Hom ` C ) |
| 5 |
|
cat1lem.5 |
|- ( ph -> (/) e. U ) |
| 6 |
|
cat1lem.6 |
|- ( ph -> Y e. U ) |
| 7 |
|
cat1lem.7 |
|- ( ph -> (/) =/= Y ) |
| 8 |
1 2
|
setcbas |
|- ( ph -> U = ( Base ` C ) ) |
| 9 |
8 3
|
eqtr4di |
|- ( ph -> U = B ) |
| 10 |
5 9
|
eleqtrd |
|- ( ph -> (/) e. B ) |
| 11 |
6 9
|
eleqtrd |
|- ( ph -> Y e. B ) |
| 12 |
|
f0 |
|- (/) : (/) --> (/) |
| 13 |
1 2 4 5 5
|
elsetchom |
|- ( ph -> ( (/) e. ( (/) H (/) ) <-> (/) : (/) --> (/) ) ) |
| 14 |
12 13
|
mpbiri |
|- ( ph -> (/) e. ( (/) H (/) ) ) |
| 15 |
|
f0 |
|- (/) : (/) --> Y |
| 16 |
1 2 4 5 6
|
elsetchom |
|- ( ph -> ( (/) e. ( (/) H Y ) <-> (/) : (/) --> Y ) ) |
| 17 |
15 16
|
mpbiri |
|- ( ph -> (/) e. ( (/) H Y ) ) |
| 18 |
|
inelcm |
|- ( ( (/) e. ( (/) H (/) ) /\ (/) e. ( (/) H Y ) ) -> ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) ) |
| 19 |
14 17 18
|
syl2anc |
|- ( ph -> ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) ) |
| 20 |
7
|
neneqd |
|- ( ph -> -. (/) = Y ) |
| 21 |
20
|
intnand |
|- ( ph -> -. ( (/) = (/) /\ (/) = Y ) ) |
| 22 |
|
oveq1 |
|- ( z = (/) -> ( z H w ) = ( (/) H w ) ) |
| 23 |
22
|
ineq2d |
|- ( z = (/) -> ( ( (/) H (/) ) i^i ( z H w ) ) = ( ( (/) H (/) ) i^i ( (/) H w ) ) ) |
| 24 |
23
|
neeq1d |
|- ( z = (/) -> ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) <-> ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) ) ) |
| 25 |
|
eqeq2 |
|- ( z = (/) -> ( (/) = z <-> (/) = (/) ) ) |
| 26 |
25
|
anbi1d |
|- ( z = (/) -> ( ( (/) = z /\ (/) = w ) <-> ( (/) = (/) /\ (/) = w ) ) ) |
| 27 |
26
|
notbid |
|- ( z = (/) -> ( -. ( (/) = z /\ (/) = w ) <-> -. ( (/) = (/) /\ (/) = w ) ) ) |
| 28 |
24 27
|
anbi12d |
|- ( z = (/) -> ( ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) <-> ( ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = w ) ) ) ) |
| 29 |
|
oveq2 |
|- ( w = Y -> ( (/) H w ) = ( (/) H Y ) ) |
| 30 |
29
|
ineq2d |
|- ( w = Y -> ( ( (/) H (/) ) i^i ( (/) H w ) ) = ( ( (/) H (/) ) i^i ( (/) H Y ) ) ) |
| 31 |
30
|
neeq1d |
|- ( w = Y -> ( ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) <-> ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) ) ) |
| 32 |
|
eqeq2 |
|- ( w = Y -> ( (/) = w <-> (/) = Y ) ) |
| 33 |
32
|
anbi2d |
|- ( w = Y -> ( ( (/) = (/) /\ (/) = w ) <-> ( (/) = (/) /\ (/) = Y ) ) ) |
| 34 |
33
|
notbid |
|- ( w = Y -> ( -. ( (/) = (/) /\ (/) = w ) <-> -. ( (/) = (/) /\ (/) = Y ) ) ) |
| 35 |
31 34
|
anbi12d |
|- ( w = Y -> ( ( ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = w ) ) <-> ( ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = Y ) ) ) ) |
| 36 |
28 35
|
rspc2ev |
|- ( ( (/) e. B /\ Y e. B /\ ( ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = Y ) ) ) -> E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) |
| 37 |
10 11 19 21 36
|
syl112anc |
|- ( ph -> E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) |
| 38 |
|
oveq1 |
|- ( x = (/) -> ( x H y ) = ( (/) H y ) ) |
| 39 |
38
|
ineq1d |
|- ( x = (/) -> ( ( x H y ) i^i ( z H w ) ) = ( ( (/) H y ) i^i ( z H w ) ) ) |
| 40 |
39
|
neeq1d |
|- ( x = (/) -> ( ( ( x H y ) i^i ( z H w ) ) =/= (/) <-> ( ( (/) H y ) i^i ( z H w ) ) =/= (/) ) ) |
| 41 |
|
eqeq1 |
|- ( x = (/) -> ( x = z <-> (/) = z ) ) |
| 42 |
41
|
anbi1d |
|- ( x = (/) -> ( ( x = z /\ y = w ) <-> ( (/) = z /\ y = w ) ) ) |
| 43 |
42
|
notbid |
|- ( x = (/) -> ( -. ( x = z /\ y = w ) <-> -. ( (/) = z /\ y = w ) ) ) |
| 44 |
40 43
|
anbi12d |
|- ( x = (/) -> ( ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) ) ) |
| 45 |
44
|
2rexbidv |
|- ( x = (/) -> ( E. z e. B E. w e. B ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. z e. B E. w e. B ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) ) ) |
| 46 |
|
oveq2 |
|- ( y = (/) -> ( (/) H y ) = ( (/) H (/) ) ) |
| 47 |
46
|
ineq1d |
|- ( y = (/) -> ( ( (/) H y ) i^i ( z H w ) ) = ( ( (/) H (/) ) i^i ( z H w ) ) ) |
| 48 |
47
|
neeq1d |
|- ( y = (/) -> ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) <-> ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) ) ) |
| 49 |
|
eqeq1 |
|- ( y = (/) -> ( y = w <-> (/) = w ) ) |
| 50 |
49
|
anbi2d |
|- ( y = (/) -> ( ( (/) = z /\ y = w ) <-> ( (/) = z /\ (/) = w ) ) ) |
| 51 |
50
|
notbid |
|- ( y = (/) -> ( -. ( (/) = z /\ y = w ) <-> -. ( (/) = z /\ (/) = w ) ) ) |
| 52 |
48 51
|
anbi12d |
|- ( y = (/) -> ( ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) <-> ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) ) |
| 53 |
52
|
2rexbidv |
|- ( y = (/) -> ( E. z e. B E. w e. B ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) <-> E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) ) |
| 54 |
45 53
|
rspc2ev |
|- ( ( (/) e. B /\ (/) e. B /\ E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) -> E. x e. B E. y e. B E. z e. B E. w e. B ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |
| 55 |
10 10 37 54
|
syl3anc |
|- ( ph -> E. x e. B E. y e. B E. z e. B E. w e. B ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |