Step |
Hyp |
Ref |
Expression |
1 |
|
catcocl.b |
|- B = ( Base ` C ) |
2 |
|
catcocl.h |
|- H = ( Hom ` C ) |
3 |
|
catcocl.o |
|- .x. = ( comp ` C ) |
4 |
|
catcocl.c |
|- ( ph -> C e. Cat ) |
5 |
|
catcocl.x |
|- ( ph -> X e. B ) |
6 |
|
catcocl.y |
|- ( ph -> Y e. B ) |
7 |
|
catcocl.z |
|- ( ph -> Z e. B ) |
8 |
|
catcocl.f |
|- ( ph -> F e. ( X H Y ) ) |
9 |
|
catcocl.g |
|- ( ph -> G e. ( Y H Z ) ) |
10 |
|
catass.w |
|- ( ph -> W e. B ) |
11 |
|
catass.g |
|- ( ph -> K e. ( Z H W ) ) |
12 |
1 2 3
|
iscat |
|- ( C e. Cat -> ( C e. Cat <-> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) ) ) |
13 |
12
|
ibi |
|- ( C e. Cat -> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) ) |
14 |
4 13
|
syl |
|- ( ph -> A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) ) |
15 |
6
|
adantr |
|- ( ( ph /\ x = X ) -> Y e. B ) |
16 |
7
|
ad2antrr |
|- ( ( ( ph /\ x = X ) /\ y = Y ) -> Z e. B ) |
17 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> F e. ( X H Y ) ) |
18 |
|
simpllr |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> x = X ) |
19 |
|
simplr |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> y = Y ) |
20 |
18 19
|
oveq12d |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( x H y ) = ( X H Y ) ) |
21 |
17 20
|
eleqtrrd |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> F e. ( x H y ) ) |
22 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> G e. ( Y H Z ) ) |
23 |
|
simpllr |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> y = Y ) |
24 |
|
simplr |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> z = Z ) |
25 |
23 24
|
oveq12d |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> ( y H z ) = ( Y H Z ) ) |
26 |
22 25
|
eleqtrrd |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> G e. ( y H z ) ) |
27 |
10
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> W e. B ) |
28 |
11
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> K e. ( Z H W ) ) |
29 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> z = Z ) |
30 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> w = W ) |
31 |
29 30
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> ( z H w ) = ( Z H W ) ) |
32 |
28 31
|
eleqtrrd |
|- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> K e. ( z H w ) ) |
33 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> x = X ) |
34 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> y = Y ) |
35 |
33 34
|
opeq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. x , y >. = <. X , Y >. ) |
36 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> w = W ) |
37 |
35 36
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , y >. .x. w ) = ( <. X , Y >. .x. W ) ) |
38 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> z = Z ) |
39 |
34 38
|
opeq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. y , z >. = <. Y , Z >. ) |
40 |
39 36
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. y , z >. .x. w ) = ( <. Y , Z >. .x. W ) ) |
41 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> k = K ) |
42 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> g = G ) |
43 |
40 41 42
|
oveq123d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( k ( <. y , z >. .x. w ) g ) = ( K ( <. Y , Z >. .x. W ) G ) ) |
44 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> f = F ) |
45 |
37 43 44
|
oveq123d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) ) |
46 |
33 38
|
opeq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> <. x , z >. = <. X , Z >. ) |
47 |
46 36
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , z >. .x. w ) = ( <. X , Z >. .x. W ) ) |
48 |
35 38
|
oveq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( <. x , y >. .x. z ) = ( <. X , Y >. .x. Z ) ) |
49 |
48 42 44
|
oveq123d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( g ( <. x , y >. .x. z ) f ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
50 |
47 41 49
|
oveq123d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) |
51 |
45 50
|
eqeq12d |
|- ( ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) /\ k = K ) -> ( ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) <-> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
52 |
32 51
|
rspcdv |
|- ( ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) /\ w = W ) -> ( A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
53 |
27 52
|
rspcimdv |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> ( A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
54 |
53
|
adantld |
|- ( ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) /\ g = G ) -> ( ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
55 |
26 54
|
rspcimdv |
|- ( ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) /\ f = F ) -> ( A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
56 |
21 55
|
rspcimdv |
|- ( ( ( ( ph /\ x = X ) /\ y = Y ) /\ z = Z ) -> ( A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
57 |
16 56
|
rspcimdv |
|- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
58 |
15 57
|
rspcimdv |
|- ( ( ph /\ x = X ) -> ( A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
59 |
58
|
adantld |
|- ( ( ph /\ x = X ) -> ( ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
60 |
5 59
|
rspcimdv |
|- ( ph -> ( A. x e. B ( E. g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( ( g ( <. x , y >. .x. z ) f ) e. ( x H z ) /\ A. w e. B A. k e. ( z H w ) ( ( k ( <. y , z >. .x. w ) g ) ( <. x , y >. .x. w ) f ) = ( k ( <. x , z >. .x. w ) ( g ( <. x , y >. .x. z ) f ) ) ) ) -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) ) |
61 |
14 60
|
mpd |
|- ( ph -> ( ( K ( <. Y , Z >. .x. W ) G ) ( <. X , Y >. .x. W ) F ) = ( K ( <. X , Z >. .x. W ) ( G ( <. X , Y >. .x. Z ) F ) ) ) |