Metamath Proof Explorer


Theorem catcbascl

Description: An element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl . (Contributed by AV, 14-Oct-2024)

Ref Expression
Hypotheses catcbascl.c
|- C = ( CatCat ` U )
catcbascl.b
|- B = ( Base ` C )
catcbascl.u
|- ( ph -> U e. WUni )
catcbascl.x
|- ( ph -> X e. B )
Assertion catcbascl
|- ( ph -> X e. U )

Proof

Step Hyp Ref Expression
1 catcbascl.c
 |-  C = ( CatCat ` U )
2 catcbascl.b
 |-  B = ( Base ` C )
3 catcbascl.u
 |-  ( ph -> U e. WUni )
4 catcbascl.x
 |-  ( ph -> X e. B )
5 1 2 3 catcbas
 |-  ( ph -> B = ( U i^i Cat ) )
6 4 5 eleqtrd
 |-  ( ph -> X e. ( U i^i Cat ) )
7 6 elin1d
 |-  ( ph -> X e. U )