Description: The category of categories is a category, see remark 3.48 in Adamek p. 40. (Clearly it cannot be an element of itself, hence it is " U -large".) (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | catccat.c | |- C = ( CatCat ` U ) |
|
Assertion | catccat | |- ( U e. V -> C e. Cat ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catccat.c | |- C = ( CatCat ` U ) |
|
2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
3 | 1 2 | catccatid | |- ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. ( Base ` C ) |-> ( idFunc ` x ) ) ) ) |
4 | 3 | simpld | |- ( U e. V -> C e. Cat ) |