Metamath Proof Explorer


Theorem catccat

Description: The category of categories is a category, see remark 3.48 in Adamek p. 40. (Clearly it cannot be an element of itself, hence it is " U -large".) (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypothesis catccat.c
|- C = ( CatCat ` U )
Assertion catccat
|- ( U e. V -> C e. Cat )

Proof

Step Hyp Ref Expression
1 catccat.c
 |-  C = ( CatCat ` U )
2 eqid
 |-  ( Base ` C ) = ( Base ` C )
3 1 2 catccatid
 |-  ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. ( Base ` C ) |-> ( idFunc ` x ) ) ) )
4 3 simpld
 |-  ( U e. V -> C e. Cat )