Step |
Hyp |
Ref |
Expression |
1 |
|
catcfuccl.c |
|- C = ( CatCat ` U ) |
2 |
|
catcfuccl.b |
|- B = ( Base ` C ) |
3 |
|
catcfuccl.o |
|- Q = ( X FuncCat Y ) |
4 |
|
catcfuccl.u |
|- ( ph -> U e. WUni ) |
5 |
|
catcfuccl.1 |
|- ( ph -> _om e. U ) |
6 |
|
catcfuccl.x |
|- ( ph -> X e. B ) |
7 |
|
catcfuccl.y |
|- ( ph -> Y e. B ) |
8 |
|
eqid |
|- ( X Func Y ) = ( X Func Y ) |
9 |
|
eqid |
|- ( X Nat Y ) = ( X Nat Y ) |
10 |
|
eqid |
|- ( Base ` X ) = ( Base ` X ) |
11 |
|
eqid |
|- ( comp ` Y ) = ( comp ` Y ) |
12 |
1 2 4
|
catcbas |
|- ( ph -> B = ( U i^i Cat ) ) |
13 |
6 12
|
eleqtrd |
|- ( ph -> X e. ( U i^i Cat ) ) |
14 |
13
|
elin2d |
|- ( ph -> X e. Cat ) |
15 |
7 12
|
eleqtrd |
|- ( ph -> Y e. ( U i^i Cat ) ) |
16 |
15
|
elin2d |
|- ( ph -> Y e. Cat ) |
17 |
|
eqidd |
|- ( ph -> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
18 |
3 8 9 10 11 14 16 17
|
fucval |
|- ( ph -> Q = { <. ( Base ` ndx ) , ( X Func Y ) >. , <. ( Hom ` ndx ) , ( X Nat Y ) >. , <. ( comp ` ndx ) , ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
19 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
20 |
4 5
|
wunndx |
|- ( ph -> ndx e. U ) |
21 |
19 4 20
|
wunstr |
|- ( ph -> ( Base ` ndx ) e. U ) |
22 |
1 2 4 6
|
catcbascl |
|- ( ph -> X e. U ) |
23 |
1 2 4 7
|
catcbascl |
|- ( ph -> Y e. U ) |
24 |
4 22 23
|
wunfunc |
|- ( ph -> ( X Func Y ) e. U ) |
25 |
4 21 24
|
wunop |
|- ( ph -> <. ( Base ` ndx ) , ( X Func Y ) >. e. U ) |
26 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
27 |
26 4 20
|
wunstr |
|- ( ph -> ( Hom ` ndx ) e. U ) |
28 |
4 22 23
|
wunnat |
|- ( ph -> ( X Nat Y ) e. U ) |
29 |
4 27 28
|
wunop |
|- ( ph -> <. ( Hom ` ndx ) , ( X Nat Y ) >. e. U ) |
30 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
31 |
30 4 20
|
wunstr |
|- ( ph -> ( comp ` ndx ) e. U ) |
32 |
4 24 24
|
wunxp |
|- ( ph -> ( ( X Func Y ) X. ( X Func Y ) ) e. U ) |
33 |
4 32 24
|
wunxp |
|- ( ph -> ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) e. U ) |
34 |
1 2 4 7
|
catcccocl |
|- ( ph -> ( comp ` Y ) e. U ) |
35 |
4 34
|
wunrn |
|- ( ph -> ran ( comp ` Y ) e. U ) |
36 |
4 35
|
wununi |
|- ( ph -> U. ran ( comp ` Y ) e. U ) |
37 |
4 36
|
wunrn |
|- ( ph -> ran U. ran ( comp ` Y ) e. U ) |
38 |
4 37
|
wununi |
|- ( ph -> U. ran U. ran ( comp ` Y ) e. U ) |
39 |
4 38
|
wunpw |
|- ( ph -> ~P U. ran U. ran ( comp ` Y ) e. U ) |
40 |
1 2 4 6
|
catcbaselcl |
|- ( ph -> ( Base ` X ) e. U ) |
41 |
4 39 40
|
wunmap |
|- ( ph -> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) e. U ) |
42 |
4 28
|
wunrn |
|- ( ph -> ran ( X Nat Y ) e. U ) |
43 |
4 42
|
wununi |
|- ( ph -> U. ran ( X Nat Y ) e. U ) |
44 |
4 43 43
|
wunxp |
|- ( ph -> ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) e. U ) |
45 |
4 41 44
|
wunpm |
|- ( ph -> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) e. U ) |
46 |
|
fvex |
|- ( 1st ` v ) e. _V |
47 |
|
fvex |
|- ( 2nd ` v ) e. _V |
48 |
|
ovex |
|- ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) e. _V |
49 |
|
ovex |
|- ( X Nat Y ) e. _V |
50 |
49
|
rnex |
|- ran ( X Nat Y ) e. _V |
51 |
50
|
uniex |
|- U. ran ( X Nat Y ) e. _V |
52 |
51 51
|
xpex |
|- ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) e. _V |
53 |
|
eqid |
|- ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) = ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) |
54 |
|
ovssunirn |
|- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) C_ U. ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) |
55 |
|
ovssunirn |
|- ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran ( comp ` Y ) |
56 |
|
rnss |
|- ( ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran ( comp ` Y ) -> ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ ran U. ran ( comp ` Y ) ) |
57 |
|
uniss |
|- ( ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ ran U. ran ( comp ` Y ) -> U. ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran U. ran ( comp ` Y ) ) |
58 |
55 56 57
|
mp2b |
|- U. ran ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) C_ U. ran U. ran ( comp ` Y ) |
59 |
54 58
|
sstri |
|- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) C_ U. ran U. ran ( comp ` Y ) |
60 |
|
ovex |
|- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. _V |
61 |
60
|
elpw |
|- ( ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. ~P U. ran U. ran ( comp ` Y ) <-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) C_ U. ran U. ran ( comp ` Y ) ) |
62 |
59 61
|
mpbir |
|- ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. ~P U. ran U. ran ( comp ` Y ) |
63 |
62
|
a1i |
|- ( x e. ( Base ` X ) -> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) e. ~P U. ran U. ran ( comp ` Y ) ) |
64 |
53 63
|
fmpti |
|- ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) : ( Base ` X ) --> ~P U. ran U. ran ( comp ` Y ) |
65 |
|
fvex |
|- ( comp ` Y ) e. _V |
66 |
65
|
rnex |
|- ran ( comp ` Y ) e. _V |
67 |
66
|
uniex |
|- U. ran ( comp ` Y ) e. _V |
68 |
67
|
rnex |
|- ran U. ran ( comp ` Y ) e. _V |
69 |
68
|
uniex |
|- U. ran U. ran ( comp ` Y ) e. _V |
70 |
69
|
pwex |
|- ~P U. ran U. ran ( comp ` Y ) e. _V |
71 |
|
fvex |
|- ( Base ` X ) e. _V |
72 |
70 71
|
elmap |
|- ( ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) <-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) : ( Base ` X ) --> ~P U. ran U. ran ( comp ` Y ) ) |
73 |
64 72
|
mpbir |
|- ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) |
74 |
73
|
rgen2w |
|- A. b e. ( g ( X Nat Y ) h ) A. a e. ( f ( X Nat Y ) g ) ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) |
75 |
|
eqid |
|- ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
76 |
75
|
fmpo |
|- ( A. b e. ( g ( X Nat Y ) h ) A. a e. ( f ( X Nat Y ) g ) ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) e. ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) <-> ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) : ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) --> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ) |
77 |
74 76
|
mpbi |
|- ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) : ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) --> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) |
78 |
|
ovssunirn |
|- ( g ( X Nat Y ) h ) C_ U. ran ( X Nat Y ) |
79 |
|
ovssunirn |
|- ( f ( X Nat Y ) g ) C_ U. ran ( X Nat Y ) |
80 |
|
xpss12 |
|- ( ( ( g ( X Nat Y ) h ) C_ U. ran ( X Nat Y ) /\ ( f ( X Nat Y ) g ) C_ U. ran ( X Nat Y ) ) -> ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) C_ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
81 |
78 79 80
|
mp2an |
|- ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) C_ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) |
82 |
|
elpm2r |
|- ( ( ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) e. _V /\ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) e. _V ) /\ ( ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) : ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) --> ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) /\ ( ( g ( X Nat Y ) h ) X. ( f ( X Nat Y ) g ) ) C_ ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) -> ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
83 |
48 52 77 81 82
|
mp4an |
|- ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
84 |
83
|
sbcth |
|- ( ( 2nd ` v ) e. _V -> [. ( 2nd ` v ) / g ]. ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
85 |
|
sbcel1g |
|- ( ( 2nd ` v ) e. _V -> ( [. ( 2nd ` v ) / g ]. ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) <-> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) ) |
86 |
84 85
|
mpbid |
|- ( ( 2nd ` v ) e. _V -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
87 |
47 86
|
ax-mp |
|- [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
88 |
87
|
sbcth |
|- ( ( 1st ` v ) e. _V -> [. ( 1st ` v ) / f ]. [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
89 |
|
sbcel1g |
|- ( ( 1st ` v ) e. _V -> ( [. ( 1st ` v ) / f ]. [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) <-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) ) |
90 |
88 89
|
mpbid |
|- ( ( 1st ` v ) e. _V -> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
91 |
46 90
|
ax-mp |
|- [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
92 |
91
|
rgen2w |
|- A. v e. ( ( X Func Y ) X. ( X Func Y ) ) A. h e. ( X Func Y ) [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
93 |
|
eqid |
|- ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
94 |
93
|
fmpo |
|- ( A. v e. ( ( X Func Y ) X. ( X Func Y ) ) A. h e. ( X Func Y ) [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) e. ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) <-> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) : ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) --> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
95 |
92 94
|
mpbi |
|- ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) : ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) --> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) |
96 |
95
|
a1i |
|- ( ph -> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) : ( ( ( X Func Y ) X. ( X Func Y ) ) X. ( X Func Y ) ) --> ( ( ~P U. ran U. ran ( comp ` Y ) ^m ( Base ` X ) ) ^pm ( U. ran ( X Nat Y ) X. U. ran ( X Nat Y ) ) ) ) |
97 |
4 33 45 96
|
wunf |
|- ( ph -> ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) e. U ) |
98 |
4 31 97
|
wunop |
|- ( ph -> <. ( comp ` ndx ) , ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. e. U ) |
99 |
4 25 29 98
|
wuntp |
|- ( ph -> { <. ( Base ` ndx ) , ( X Func Y ) >. , <. ( Hom ` ndx ) , ( X Nat Y ) >. , <. ( comp ` ndx ) , ( v e. ( ( X Func Y ) X. ( X Func Y ) ) , h e. ( X Func Y ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( X Nat Y ) h ) , a e. ( f ( X Nat Y ) g ) |-> ( x e. ( Base ` X ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` Y ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } e. U ) |
100 |
18 99
|
eqeltrd |
|- ( ph -> Q e. U ) |
101 |
3 14 16
|
fuccat |
|- ( ph -> Q e. Cat ) |
102 |
100 101
|
elind |
|- ( ph -> Q e. ( U i^i Cat ) ) |
103 |
102 12
|
eleqtrrd |
|- ( ph -> Q e. B ) |