Step |
Hyp |
Ref |
Expression |
1 |
|
catciso.c |
|- C = ( CatCat ` U ) |
2 |
|
catciso.b |
|- B = ( Base ` C ) |
3 |
|
catciso.r |
|- R = ( Base ` X ) |
4 |
|
catciso.s |
|- S = ( Base ` Y ) |
5 |
|
catciso.u |
|- ( ph -> U e. V ) |
6 |
|
catciso.x |
|- ( ph -> X e. B ) |
7 |
|
catciso.y |
|- ( ph -> Y e. B ) |
8 |
|
catciso.i |
|- I = ( Iso ` C ) |
9 |
|
relfunc |
|- Rel ( X Func Y ) |
10 |
|
eqid |
|- ( Inv ` C ) = ( Inv ` C ) |
11 |
1
|
catccat |
|- ( U e. V -> C e. Cat ) |
12 |
5 11
|
syl |
|- ( ph -> C e. Cat ) |
13 |
2 10 12 6 7 8
|
isoval |
|- ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) ) |
14 |
13
|
eleq2d |
|- ( ph -> ( F e. ( X I Y ) <-> F e. dom ( X ( Inv ` C ) Y ) ) ) |
15 |
14
|
biimpa |
|- ( ( ph /\ F e. ( X I Y ) ) -> F e. dom ( X ( Inv ` C ) Y ) ) |
16 |
12
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> C e. Cat ) |
17 |
6
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> X e. B ) |
18 |
7
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> Y e. B ) |
19 |
2 10 16 17 18
|
invfun |
|- ( ( ph /\ F e. ( X I Y ) ) -> Fun ( X ( Inv ` C ) Y ) ) |
20 |
|
funfvbrb |
|- ( Fun ( X ( Inv ` C ) Y ) -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
21 |
19 20
|
syl |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
22 |
15 21
|
mpbid |
|- ( ( ph /\ F e. ( X I Y ) ) -> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) |
23 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
24 |
2 10 16 17 18 23
|
isinv |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) <-> ( F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) /\ ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) ) |
25 |
22 24
|
mpbid |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) /\ ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) |
26 |
25
|
simpld |
|- ( ( ph /\ F e. ( X I Y ) ) -> F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) |
27 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
28 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
29 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
30 |
2 27 28 29 23 16 17 18
|
issect |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( X ( Sect ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) <-> ( F e. ( X ( Hom ` C ) Y ) /\ ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
31 |
26 30
|
mpbid |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F e. ( X ( Hom ` C ) Y ) /\ ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
32 |
31
|
simp1d |
|- ( ( ph /\ F e. ( X I Y ) ) -> F e. ( X ( Hom ` C ) Y ) ) |
33 |
1 2 5 27 6 7
|
catchom |
|- ( ph -> ( X ( Hom ` C ) Y ) = ( X Func Y ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( X ( Hom ` C ) Y ) = ( X Func Y ) ) |
35 |
32 34
|
eleqtrd |
|- ( ( ph /\ F e. ( X I Y ) ) -> F e. ( X Func Y ) ) |
36 |
|
1st2nd |
|- ( ( Rel ( X Func Y ) /\ F e. ( X Func Y ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
37 |
9 35 36
|
sylancr |
|- ( ( ph /\ F e. ( X I Y ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
38 |
|
1st2ndbr |
|- ( ( Rel ( X Func Y ) /\ F e. ( X Func Y ) ) -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
39 |
9 35 38
|
sylancr |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
40 |
|
eqid |
|- ( Hom ` X ) = ( Hom ` X ) |
41 |
|
eqid |
|- ( Hom ` Y ) = ( Hom ` Y ) |
42 |
39
|
adantr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) ) |
43 |
|
simprl |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> x e. R ) |
44 |
|
simprr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> y e. R ) |
45 |
3 40 41 42 43 44
|
funcf2 |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
46 |
|
relfunc |
|- Rel ( Y Func X ) |
47 |
31
|
simp2d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) ) |
48 |
1 2 5 27 7 6
|
catchom |
|- ( ph -> ( Y ( Hom ` C ) X ) = ( Y Func X ) ) |
49 |
48
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( Y ( Hom ` C ) X ) = ( Y Func X ) ) |
50 |
47 49
|
eleqtrd |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y Func X ) ) |
51 |
|
1st2ndbr |
|- ( ( Rel ( Y Func X ) /\ ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y Func X ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( Y Func X ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
52 |
46 50 51
|
sylancr |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( Y Func X ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
53 |
52
|
adantr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( Y Func X ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
54 |
3 4 42
|
funcf1 |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` F ) : R --> S ) |
55 |
54 43
|
ffvelrnd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` F ) ` x ) e. S ) |
56 |
54 44
|
ffvelrnd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` F ) ` y ) e. S ) |
57 |
4 41 40 53 55 56
|
funcf2 |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` X ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) ) |
58 |
31
|
simp3d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) |
59 |
5
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> U e. V ) |
60 |
1 2 59 28 17 18 17 35 50
|
catcco |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) |
61 |
|
eqid |
|- ( idFunc ` X ) = ( idFunc ` X ) |
62 |
1 2 29 61 5 6
|
catcid |
|- ( ph -> ( ( Id ` C ) ` X ) = ( idFunc ` X ) ) |
63 |
62
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( Id ` C ) ` X ) = ( idFunc ` X ) ) |
64 |
58 60 63
|
3eqtr3d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) = ( idFunc ` X ) ) |
65 |
64
|
adantr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) = ( idFunc ` X ) ) |
66 |
65
|
fveq2d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( 1st ` ( idFunc ` X ) ) ) |
67 |
66
|
fveq1d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` x ) = ( ( 1st ` ( idFunc ` X ) ) ` x ) ) |
68 |
35
|
adantr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> F e. ( X Func Y ) ) |
69 |
50
|
adantr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y Func X ) ) |
70 |
3 68 69 43
|
cofu1 |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` x ) = ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ) |
71 |
1 2 5
|
catcbas |
|- ( ph -> B = ( U i^i Cat ) ) |
72 |
|
inss2 |
|- ( U i^i Cat ) C_ Cat |
73 |
71 72
|
eqsstrdi |
|- ( ph -> B C_ Cat ) |
74 |
73 6
|
sseldd |
|- ( ph -> X e. Cat ) |
75 |
74
|
ad2antrr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> X e. Cat ) |
76 |
61 3 75 43
|
idfu1 |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( idFunc ` X ) ) ` x ) = x ) |
77 |
67 70 76
|
3eqtr3d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) = x ) |
78 |
66
|
fveq1d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` y ) = ( ( 1st ` ( idFunc ` X ) ) ` y ) ) |
79 |
3 68 69 44
|
cofu1 |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) ` y ) = ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) |
80 |
61 3 75 44
|
idfu1 |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( idFunc ` X ) ) ` y ) = y ) |
81 |
78 79 80
|
3eqtr3d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) = y ) |
82 |
77 81
|
oveq12d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` X ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) = ( x ( Hom ` X ) y ) ) |
83 |
82
|
feq3d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` X ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) <-> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( x ( Hom ` X ) y ) ) ) |
84 |
57 83
|
mpbid |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) --> ( x ( Hom ` X ) y ) ) |
85 |
65
|
fveq2d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 2nd ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( 2nd ` ( idFunc ` X ) ) ) |
86 |
85
|
oveqd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) y ) = ( x ( 2nd ` ( idFunc ` X ) ) y ) ) |
87 |
3 68 69 43 44
|
cofu2nd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) y ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
88 |
61 3 75 40 43 44
|
idfu2nd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` ( idFunc ` X ) ) y ) = ( _I |` ( x ( Hom ` X ) y ) ) ) |
89 |
86 87 88
|
3eqtr3d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) = ( _I |` ( x ( Hom ` X ) y ) ) ) |
90 |
25
|
simprd |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F ) |
91 |
2 27 28 29 23 16 18 17
|
issect |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) ( Y ( Sect ` C ) X ) F <-> ( ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( ( Id ` C ) ` Y ) ) ) ) |
92 |
90 91
|
mpbid |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( ( X ( Inv ` C ) Y ) ` F ) e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( ( Id ` C ) ` Y ) ) ) |
93 |
92
|
simp3d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( ( Id ` C ) ` Y ) ) |
94 |
1 2 59 28 18 17 18 50 35
|
catcco |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) = ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
95 |
|
eqid |
|- ( idFunc ` Y ) = ( idFunc ` Y ) |
96 |
1 2 29 95 5 7
|
catcid |
|- ( ph -> ( ( Id ` C ) ` Y ) = ( idFunc ` Y ) ) |
97 |
96
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( Id ` C ) ` Y ) = ( idFunc ` Y ) ) |
98 |
93 94 97
|
3eqtr3d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) = ( idFunc ` Y ) ) |
99 |
98
|
adantr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) = ( idFunc ` Y ) ) |
100 |
99
|
fveq2d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( 2nd ` ( idFunc ` Y ) ) ) |
101 |
100
|
oveqd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) ( ( 1st ` F ) ` y ) ) = ( ( ( 1st ` F ) ` x ) ( 2nd ` ( idFunc ` Y ) ) ( ( 1st ` F ) ` y ) ) ) |
102 |
4 69 68 55 56
|
cofu2nd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) ( ( 1st ` F ) ` y ) ) = ( ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( 2nd ` F ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) ) |
103 |
77 81
|
oveq12d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( 2nd ` F ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) = ( x ( 2nd ` F ) y ) ) |
104 |
103
|
coeq1d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` x ) ) ( 2nd ` F ) ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ` ( ( 1st ` F ) ` y ) ) ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) = ( ( x ( 2nd ` F ) y ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) ) |
105 |
102 104
|
eqtrd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) ( ( 1st ` F ) ` y ) ) = ( ( x ( 2nd ` F ) y ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) ) |
106 |
73
|
ad2antrr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> B C_ Cat ) |
107 |
7
|
ad2antrr |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> Y e. B ) |
108 |
106 107
|
sseldd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> Y e. Cat ) |
109 |
95 4 108 41 55 56
|
idfu2nd |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` ( idFunc ` Y ) ) ( ( 1st ` F ) ` y ) ) = ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
110 |
101 105 109
|
3eqtr3d |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( ( x ( 2nd ` F ) y ) o. ( ( ( 1st ` F ) ` x ) ( 2nd ` ( ( X ( Inv ` C ) Y ) ` F ) ) ( ( 1st ` F ) ` y ) ) ) = ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
111 |
45 84 89 110
|
fcof1od |
|- ( ( ( ph /\ F e. ( X I Y ) ) /\ ( x e. R /\ y e. R ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
112 |
111
|
ralrimivva |
|- ( ( ph /\ F e. ( X I Y ) ) -> A. x e. R A. y e. R ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) |
113 |
3 40 41
|
isffth2 |
|- ( ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) <-> ( ( 1st ` F ) ( X Func Y ) ( 2nd ` F ) /\ A. x e. R A. y e. R ( x ( 2nd ` F ) y ) : ( x ( Hom ` X ) y ) -1-1-onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` Y ) ( ( 1st ` F ) ` y ) ) ) ) |
114 |
39 112 113
|
sylanbrc |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
115 |
|
df-br |
|- ( ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) <-> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
116 |
114 115
|
sylib |
|- ( ( ph /\ F e. ( X I Y ) ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
117 |
37 116
|
eqeltrd |
|- ( ( ph /\ F e. ( X I Y ) ) -> F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
118 |
3 4 39
|
funcf1 |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) : R --> S ) |
119 |
4 3 52
|
funcf1 |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) : S --> R ) |
120 |
64
|
fveq2d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( 1st ` ( idFunc ` X ) ) ) |
121 |
3 35 50
|
cofu1st |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( ( ( X ( Inv ` C ) Y ) ` F ) o.func F ) ) = ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) o. ( 1st ` F ) ) ) |
122 |
74
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> X e. Cat ) |
123 |
61 3 122
|
idfu1st |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( idFunc ` X ) ) = ( _I |` R ) ) |
124 |
120 121 123
|
3eqtr3d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) o. ( 1st ` F ) ) = ( _I |` R ) ) |
125 |
98
|
fveq2d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( 1st ` ( idFunc ` Y ) ) ) |
126 |
4 50 35
|
cofu1st |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( F o.func ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( ( 1st ` F ) o. ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) ) |
127 |
73 7
|
sseldd |
|- ( ph -> Y e. Cat ) |
128 |
127
|
adantr |
|- ( ( ph /\ F e. ( X I Y ) ) -> Y e. Cat ) |
129 |
95 4 128
|
idfu1st |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` ( idFunc ` Y ) ) = ( _I |` S ) ) |
130 |
125 126 129
|
3eqtr3d |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( ( 1st ` F ) o. ( 1st ` ( ( X ( Inv ` C ) Y ) ` F ) ) ) = ( _I |` S ) ) |
131 |
118 119 124 130
|
fcof1od |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( 1st ` F ) : R -1-1-onto-> S ) |
132 |
117 131
|
jca |
|- ( ( ph /\ F e. ( X I Y ) ) -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) |
133 |
12
|
adantr |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> C e. Cat ) |
134 |
6
|
adantr |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> X e. B ) |
135 |
7
|
adantr |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> Y e. B ) |
136 |
|
inss1 |
|- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Full Y ) |
137 |
|
fullfunc |
|- ( X Full Y ) C_ ( X Func Y ) |
138 |
136 137
|
sstri |
|- ( ( X Full Y ) i^i ( X Faith Y ) ) C_ ( X Func Y ) |
139 |
|
simprl |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
140 |
138 139
|
sselid |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F e. ( X Func Y ) ) |
141 |
9 140 36
|
sylancr |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
142 |
5
|
adantr |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> U e. V ) |
143 |
|
eqid |
|- ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) = ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) |
144 |
141 139
|
eqeltrrd |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. e. ( ( X Full Y ) i^i ( X Faith Y ) ) ) |
145 |
144 115
|
sylibr |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> ( 1st ` F ) ( ( X Full Y ) i^i ( X Faith Y ) ) ( 2nd ` F ) ) |
146 |
|
simprr |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> ( 1st ` F ) : R -1-1-onto-> S ) |
147 |
1 2 3 4 142 134 135 10 143 145 146
|
catcisolem |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. ( X ( Inv ` C ) Y ) <. `' ( 1st ` F ) , ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) >. ) |
148 |
141 147
|
eqbrtrd |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F ( X ( Inv ` C ) Y ) <. `' ( 1st ` F ) , ( x e. S , y e. S |-> `' ( ( `' ( 1st ` F ) ` x ) ( 2nd ` F ) ( `' ( 1st ` F ) ` y ) ) ) >. ) |
149 |
2 10 133 134 135 8 148
|
inviso1 |
|- ( ( ph /\ ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) -> F e. ( X I Y ) ) |
150 |
132 149
|
impbida |
|- ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) ) |