| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							catcoppccl.c | 
							 |-  C = ( CatCat ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							catcoppccl.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							catcoppccl.o | 
							 |-  O = ( oppCat ` X )  | 
						
						
							| 4 | 
							
								
							 | 
							catcoppccl.1 | 
							 |-  ( ph -> U e. WUni )  | 
						
						
							| 5 | 
							
								
							 | 
							catcoppccl.2 | 
							 |-  ( ph -> _om e. U )  | 
						
						
							| 6 | 
							
								
							 | 
							catcoppccl.3 | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` X ) = ( Base ` X )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` X ) = ( Hom ` X )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` X ) = ( comp ` X )  | 
						
						
							| 10 | 
							
								7 8 9 3
							 | 
							oppcval | 
							 |-  ( X e. B -> O = ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							syl | 
							 |-  ( ph -> O = ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) )  | 
						
						
							| 12 | 
							
								1 2 4 6
							 | 
							catcbascl | 
							 |-  ( ph -> X e. U )  | 
						
						
							| 13 | 
							
								
							 | 
							homid | 
							 |-  Hom = Slot ( Hom ` ndx )  | 
						
						
							| 14 | 
							
								4 5
							 | 
							wunndx | 
							 |-  ( ph -> ndx e. U )  | 
						
						
							| 15 | 
							
								13 4 14
							 | 
							wunstr | 
							 |-  ( ph -> ( Hom ` ndx ) e. U )  | 
						
						
							| 16 | 
							
								1 2 4 6
							 | 
							catchomcl | 
							 |-  ( ph -> ( Hom ` X ) e. U )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							wuntpos | 
							 |-  ( ph -> tpos ( Hom ` X ) e. U )  | 
						
						
							| 18 | 
							
								4 15 17
							 | 
							wunop | 
							 |-  ( ph -> <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. e. U )  | 
						
						
							| 19 | 
							
								4 12 18
							 | 
							wunsets | 
							 |-  ( ph -> ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) e. U )  | 
						
						
							| 20 | 
							
								
							 | 
							ccoid | 
							 |-  comp = Slot ( comp ` ndx )  | 
						
						
							| 21 | 
							
								20 4 14
							 | 
							wunstr | 
							 |-  ( ph -> ( comp ` ndx ) e. U )  | 
						
						
							| 22 | 
							
								1 2 4 6
							 | 
							catcbaselcl | 
							 |-  ( ph -> ( Base ` X ) e. U )  | 
						
						
							| 23 | 
							
								4 22 22
							 | 
							wunxp | 
							 |-  ( ph -> ( ( Base ` X ) X. ( Base ` X ) ) e. U )  | 
						
						
							| 24 | 
							
								4 23 22
							 | 
							wunxp | 
							 |-  ( ph -> ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) e. U )  | 
						
						
							| 25 | 
							
								1 2 4 6
							 | 
							catcccocl | 
							 |-  ( ph -> ( comp ` X ) e. U )  | 
						
						
							| 26 | 
							
								4 25
							 | 
							wunrn | 
							 |-  ( ph -> ran ( comp ` X ) e. U )  | 
						
						
							| 27 | 
							
								4 26
							 | 
							wununi | 
							 |-  ( ph -> U. ran ( comp ` X ) e. U )  | 
						
						
							| 28 | 
							
								4 27
							 | 
							wundm | 
							 |-  ( ph -> dom U. ran ( comp ` X ) e. U )  | 
						
						
							| 29 | 
							
								4 28
							 | 
							wuncnv | 
							 |-  ( ph -> `' dom U. ran ( comp ` X ) e. U )  | 
						
						
							| 30 | 
							
								4
							 | 
							wun0 | 
							 |-  ( ph -> (/) e. U )  | 
						
						
							| 31 | 
							
								4 30
							 | 
							wunsn | 
							 |-  ( ph -> { (/) } e. U ) | 
						
						
							| 32 | 
							
								4 29 31
							 | 
							wunun | 
							 |-  ( ph -> ( `' dom U. ran ( comp ` X ) u. { (/) } ) e. U ) | 
						
						
							| 33 | 
							
								4 27
							 | 
							wunrn | 
							 |-  ( ph -> ran U. ran ( comp ` X ) e. U )  | 
						
						
							| 34 | 
							
								4 32 33
							 | 
							wunxp | 
							 |-  ( ph -> ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U ) | 
						
						
							| 35 | 
							
								4 34
							 | 
							wunpw | 
							 |-  ( ph -> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U ) | 
						
						
							| 36 | 
							
								
							 | 
							tposssxp | 
							 |-  tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) | 
						
						
							| 37 | 
							
								
							 | 
							ovssunirn | 
							 |-  ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ U. ran ( comp ` X )  | 
						
						
							| 38 | 
							
								
							 | 
							dmss | 
							 |-  ( ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ U. ran ( comp ` X ) -> dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							ax-mp | 
							 |-  dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X )  | 
						
						
							| 40 | 
							
								
							 | 
							cnvss | 
							 |-  ( dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) -> `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ `' dom U. ran ( comp ` X ) )  | 
						
						
							| 41 | 
							
								
							 | 
							unss1 | 
							 |-  ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ `' dom U. ran ( comp ` X ) -> ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) ) | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							mp2b | 
							 |-  ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) | 
						
						
							| 43 | 
							
								37
							 | 
							rnssi | 
							 |-  ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ran U. ran ( comp ` X )  | 
						
						
							| 44 | 
							
								
							 | 
							xpss12 | 
							 |-  ( ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) /\ ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ran U. ran ( comp ` X ) ) -> ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
						
							| 45 | 
							
								42 43 44
							 | 
							mp2an | 
							 |-  ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) | 
						
						
							| 46 | 
							
								36 45
							 | 
							sstri | 
							 |-  tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) | 
						
						
							| 47 | 
							
								
							 | 
							elpw2g | 
							 |-  ( ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U -> ( tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) ) | 
						
						
							| 48 | 
							
								34 47
							 | 
							syl | 
							 |-  ( ph -> ( tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) ) | 
						
						
							| 49 | 
							
								46 48
							 | 
							mpbiri | 
							 |-  ( ph -> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
						
							| 50 | 
							
								49
							 | 
							ralrimivw | 
							 |-  ( ph -> A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
						
							| 51 | 
							
								50
							 | 
							ralrimivw | 
							 |-  ( ph -> A. x e. ( ( Base ` X ) X. ( Base ` X ) ) A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) = ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							fmpo | 
							 |-  ( A. x e. ( ( Base ` X ) X. ( Base ` X ) ) A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) : ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) --> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
						
							| 54 | 
							
								51 53
							 | 
							sylib | 
							 |-  ( ph -> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) : ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) --> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) | 
						
						
							| 55 | 
							
								4 24 35 54
							 | 
							wunf | 
							 |-  ( ph -> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) e. U )  | 
						
						
							| 56 | 
							
								4 21 55
							 | 
							wunop | 
							 |-  ( ph -> <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. e. U )  | 
						
						
							| 57 | 
							
								4 19 56
							 | 
							wunsets | 
							 |-  ( ph -> ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) e. U )  | 
						
						
							| 58 | 
							
								11 57
							 | 
							eqeltrd | 
							 |-  ( ph -> O e. U )  | 
						
						
							| 59 | 
							
								1 2 4
							 | 
							catcbas | 
							 |-  ( ph -> B = ( U i^i Cat ) )  | 
						
						
							| 60 | 
							
								6 59
							 | 
							eleqtrd | 
							 |-  ( ph -> X e. ( U i^i Cat ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							elin2d | 
							 |-  ( ph -> X e. Cat )  | 
						
						
							| 62 | 
							
								3
							 | 
							oppccat | 
							 |-  ( X e. Cat -> O e. Cat )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							syl | 
							 |-  ( ph -> O e. Cat )  | 
						
						
							| 64 | 
							
								58 63
							 | 
							elind | 
							 |-  ( ph -> O e. ( U i^i Cat ) )  | 
						
						
							| 65 | 
							
								64 59
							 | 
							eleqtrrd | 
							 |-  ( ph -> O e. B )  |