Step |
Hyp |
Ref |
Expression |
1 |
|
catcval.c |
|- C = ( CatCat ` U ) |
2 |
|
catcval.u |
|- ( ph -> U e. V ) |
3 |
|
catcval.b |
|- ( ph -> B = ( U i^i Cat ) ) |
4 |
|
catcval.h |
|- ( ph -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |
5 |
|
catcval.o |
|- ( ph -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
6 |
|
df-catc |
|- CatCat = ( u e. _V |-> [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) |
7 |
|
vex |
|- u e. _V |
8 |
7
|
inex1 |
|- ( u i^i Cat ) e. _V |
9 |
8
|
a1i |
|- ( ( ph /\ u = U ) -> ( u i^i Cat ) e. _V ) |
10 |
|
simpr |
|- ( ( ph /\ u = U ) -> u = U ) |
11 |
10
|
ineq1d |
|- ( ( ph /\ u = U ) -> ( u i^i Cat ) = ( U i^i Cat ) ) |
12 |
3
|
adantr |
|- ( ( ph /\ u = U ) -> B = ( U i^i Cat ) ) |
13 |
11 12
|
eqtr4d |
|- ( ( ph /\ u = U ) -> ( u i^i Cat ) = B ) |
14 |
|
simpr |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> b = B ) |
15 |
14
|
opeq2d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) |
16 |
|
eqidd |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x Func y ) = ( x Func y ) ) |
17 |
14 14 16
|
mpoeq123dv |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x Func y ) ) = ( x e. B , y e. B |-> ( x Func y ) ) ) |
18 |
4
|
ad2antrr |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |
19 |
17 18
|
eqtr4d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x Func y ) ) = H ) |
20 |
19
|
opeq2d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. = <. ( Hom ` ndx ) , H >. ) |
21 |
14
|
sqxpeqd |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( b X. b ) = ( B X. B ) ) |
22 |
|
eqidd |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) = ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) |
23 |
21 14 22
|
mpoeq123dv |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
24 |
5
|
ad2antrr |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
25 |
23 24
|
eqtr4d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) = .x. ) |
26 |
25
|
opeq2d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. = <. ( comp ` ndx ) , .x. >. ) |
27 |
15 20 26
|
tpeq123d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
28 |
9 13 27
|
csbied2 |
|- ( ( ph /\ u = U ) -> [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
29 |
2
|
elexd |
|- ( ph -> U e. _V ) |
30 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
31 |
30
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) |
32 |
6 28 29 31
|
fvmptd2 |
|- ( ph -> ( CatCat ` U ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
33 |
1 32
|
eqtrid |
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |