Step |
Hyp |
Ref |
Expression |
1 |
|
catprsc.1 |
|- ( ph -> .<_ = { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } ) |
2 |
1
|
breqd |
|- ( ph -> ( z .<_ w <-> z { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } w ) ) |
3 |
|
vex |
|- z e. _V |
4 |
|
vex |
|- w e. _V |
5 |
|
simpl |
|- ( ( x = z /\ y = w ) -> x = z ) |
6 |
5
|
eleq1d |
|- ( ( x = z /\ y = w ) -> ( x e. B <-> z e. B ) ) |
7 |
|
simpr |
|- ( ( x = z /\ y = w ) -> y = w ) |
8 |
7
|
eleq1d |
|- ( ( x = z /\ y = w ) -> ( y e. B <-> w e. B ) ) |
9 |
|
oveq12 |
|- ( ( x = z /\ y = w ) -> ( x H y ) = ( z H w ) ) |
10 |
9
|
neeq1d |
|- ( ( x = z /\ y = w ) -> ( ( x H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) |
11 |
6 8 10
|
3anbi123d |
|- ( ( x = z /\ y = w ) -> ( ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) <-> ( z e. B /\ w e. B /\ ( z H w ) =/= (/) ) ) ) |
12 |
|
df-3an |
|- ( ( z e. B /\ w e. B /\ ( z H w ) =/= (/) ) <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) |
13 |
11 12
|
bitrdi |
|- ( ( x = z /\ y = w ) -> ( ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) ) |
14 |
|
eqid |
|- { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } = { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } |
15 |
3 4 13 14
|
braba |
|- ( z { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } w <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) |
16 |
2 15
|
bitrdi |
|- ( ph -> ( z .<_ w <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) ) |
17 |
16
|
baibd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) |
18 |
17
|
ralrimivva |
|- ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |