| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catprsc.1 |  |-  ( ph -> .<_ = { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } ) | 
						
							| 2 | 1 | breqd |  |-  ( ph -> ( z .<_ w <-> z { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } w ) ) | 
						
							| 3 |  | vex |  |-  z e. _V | 
						
							| 4 |  | vex |  |-  w e. _V | 
						
							| 5 |  | simpl |  |-  ( ( x = z /\ y = w ) -> x = z ) | 
						
							| 6 | 5 | eleq1d |  |-  ( ( x = z /\ y = w ) -> ( x e. B <-> z e. B ) ) | 
						
							| 7 |  | simpr |  |-  ( ( x = z /\ y = w ) -> y = w ) | 
						
							| 8 | 7 | eleq1d |  |-  ( ( x = z /\ y = w ) -> ( y e. B <-> w e. B ) ) | 
						
							| 9 |  | oveq12 |  |-  ( ( x = z /\ y = w ) -> ( x H y ) = ( z H w ) ) | 
						
							| 10 | 9 | neeq1d |  |-  ( ( x = z /\ y = w ) -> ( ( x H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) | 
						
							| 11 | 6 8 10 | 3anbi123d |  |-  ( ( x = z /\ y = w ) -> ( ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) <-> ( z e. B /\ w e. B /\ ( z H w ) =/= (/) ) ) ) | 
						
							| 12 |  | df-3an |  |-  ( ( z e. B /\ w e. B /\ ( z H w ) =/= (/) ) <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) | 
						
							| 13 | 11 12 | bitrdi |  |-  ( ( x = z /\ y = w ) -> ( ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) ) | 
						
							| 14 |  | eqid |  |-  { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } = { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } | 
						
							| 15 | 3 4 13 14 | braba |  |-  ( z { <. x , y >. | ( x e. B /\ y e. B /\ ( x H y ) =/= (/) ) } w <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) | 
						
							| 16 | 2 15 | bitrdi |  |-  ( ph -> ( z .<_ w <-> ( ( z e. B /\ w e. B ) /\ ( z H w ) =/= (/) ) ) ) | 
						
							| 17 | 16 | baibd |  |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) | 
						
							| 18 | 17 | ralrimivva |  |-  ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |