| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catprsc2.1 |  |-  ( ph -> .<_ = { <. x , y >. | ( x H y ) =/= (/) } ) | 
						
							| 2 | 1 | breqd |  |-  ( ph -> ( z .<_ w <-> z { <. x , y >. | ( x H y ) =/= (/) } w ) ) | 
						
							| 3 |  | vex |  |-  z e. _V | 
						
							| 4 |  | vex |  |-  w e. _V | 
						
							| 5 |  | oveq12 |  |-  ( ( x = z /\ y = w ) -> ( x H y ) = ( z H w ) ) | 
						
							| 6 | 5 | neeq1d |  |-  ( ( x = z /\ y = w ) -> ( ( x H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) | 
						
							| 7 |  | eqid |  |-  { <. x , y >. | ( x H y ) =/= (/) } = { <. x , y >. | ( x H y ) =/= (/) } | 
						
							| 8 | 3 4 6 7 | braba |  |-  ( z { <. x , y >. | ( x H y ) =/= (/) } w <-> ( z H w ) =/= (/) ) | 
						
							| 9 | 2 8 | bitrdi |  |-  ( ph -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z .<_ w <-> ( z H w ) =/= (/) ) ) | 
						
							| 11 | 10 | ralrimivva |  |-  ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) |