| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catprs.1 |  |-  ( ph -> A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) ) | 
						
							| 2 |  | catprslem.x |  |-  ( ph -> X e. B ) | 
						
							| 3 |  | catprslem.y |  |-  ( ph -> Y e. B ) | 
						
							| 4 |  | breq1 |  |-  ( x = z -> ( x .<_ y <-> z .<_ y ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = z -> ( x H y ) = ( z H y ) ) | 
						
							| 6 | 5 | neeq1d |  |-  ( x = z -> ( ( x H y ) =/= (/) <-> ( z H y ) =/= (/) ) ) | 
						
							| 7 | 4 6 | bibi12d |  |-  ( x = z -> ( ( x .<_ y <-> ( x H y ) =/= (/) ) <-> ( z .<_ y <-> ( z H y ) =/= (/) ) ) ) | 
						
							| 8 |  | breq2 |  |-  ( y = w -> ( z .<_ y <-> z .<_ w ) ) | 
						
							| 9 |  | oveq2 |  |-  ( y = w -> ( z H y ) = ( z H w ) ) | 
						
							| 10 | 9 | neeq1d |  |-  ( y = w -> ( ( z H y ) =/= (/) <-> ( z H w ) =/= (/) ) ) | 
						
							| 11 | 8 10 | bibi12d |  |-  ( y = w -> ( ( z .<_ y <-> ( z H y ) =/= (/) ) <-> ( z .<_ w <-> ( z H w ) =/= (/) ) ) ) | 
						
							| 12 | 7 11 | cbvral2vw |  |-  ( A. x e. B A. y e. B ( x .<_ y <-> ( x H y ) =/= (/) ) <-> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) | 
						
							| 13 | 1 12 | sylib |  |-  ( ph -> A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) ) | 
						
							| 14 |  | breq12 |  |-  ( ( z = X /\ w = Y ) -> ( z .<_ w <-> X .<_ Y ) ) | 
						
							| 15 |  | oveq12 |  |-  ( ( z = X /\ w = Y ) -> ( z H w ) = ( X H Y ) ) | 
						
							| 16 | 15 | neeq1d |  |-  ( ( z = X /\ w = Y ) -> ( ( z H w ) =/= (/) <-> ( X H Y ) =/= (/) ) ) | 
						
							| 17 | 14 16 | bibi12d |  |-  ( ( z = X /\ w = Y ) -> ( ( z .<_ w <-> ( z H w ) =/= (/) ) <-> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) ) | 
						
							| 18 | 17 | rspc2gv |  |-  ( ( X e. B /\ Y e. B ) -> ( A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) ) | 
						
							| 19 | 2 3 18 | syl2anc |  |-  ( ph -> ( A. z e. B A. w e. B ( z .<_ w <-> ( z H w ) =/= (/) ) -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) ) | 
						
							| 20 | 13 19 | mpd |  |-  ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) |