Metamath Proof Explorer


Theorem cats1cld

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1
|- T = ( S ++ <" X "> )
cats1cld.2
|- ( ph -> S e. Word A )
cats1cld.3
|- ( ph -> X e. A )
Assertion cats1cld
|- ( ph -> T e. Word A )

Proof

Step Hyp Ref Expression
1 cats1cld.1
 |-  T = ( S ++ <" X "> )
2 cats1cld.2
 |-  ( ph -> S e. Word A )
3 cats1cld.3
 |-  ( ph -> X e. A )
4 3 s1cld
 |-  ( ph -> <" X "> e. Word A )
5 ccatcl
 |-  ( ( S e. Word A /\ <" X "> e. Word A ) -> ( S ++ <" X "> ) e. Word A )
6 2 4 5 syl2anc
 |-  ( ph -> ( S ++ <" X "> ) e. Word A )
7 1 6 eqeltrid
 |-  ( ph -> T e. Word A )