Metamath Proof Explorer


Theorem cats1cli

Description: Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypotheses cats1cld.1
|- T = ( S ++ <" X "> )
cats1cli.2
|- S e. Word _V
Assertion cats1cli
|- T e. Word _V

Proof

Step Hyp Ref Expression
1 cats1cld.1
 |-  T = ( S ++ <" X "> )
2 cats1cli.2
 |-  S e. Word _V
3 s1cli
 |-  <" X "> e. Word _V
4 ccatcl
 |-  ( ( S e. Word _V /\ <" X "> e. Word _V ) -> ( S ++ <" X "> ) e. Word _V )
5 2 3 4 mp2an
 |-  ( S ++ <" X "> ) e. Word _V
6 1 5 eqeltri
 |-  T e. Word _V