Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1cl |
|- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) e. Word X ) |
2 |
|
wrdf |
|- ( ( A ++ <" B "> ) e. Word X -> ( A ++ <" B "> ) : ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) --> X ) |
3 |
1 2
|
syl |
|- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) : ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) --> X ) |
4 |
|
ccatws1len |
|- ( A e. Word X -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + 1 ) ) |
5 |
4
|
oveq2d |
|- ( A e. Word X -> ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) = ( 0 ..^ ( ( # ` A ) + 1 ) ) ) |
6 |
|
lencl |
|- ( A e. Word X -> ( # ` A ) e. NN0 ) |
7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
8 |
6 7
|
eleqtrdi |
|- ( A e. Word X -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
9 |
|
fzosplitsn |
|- ( ( # ` A ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( # ` A ) + 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
10 |
8 9
|
syl |
|- ( A e. Word X -> ( 0 ..^ ( ( # ` A ) + 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
11 |
5 10
|
eqtrd |
|- ( A e. Word X -> ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
12 |
11
|
adantr |
|- ( ( A e. Word X /\ B e. X ) -> ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
13 |
12
|
feq2d |
|- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) : ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) --> X <-> ( A ++ <" B "> ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> X ) ) |
14 |
3 13
|
mpbid |
|- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> X ) |
15 |
14
|
ffnd |
|- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) Fn ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
16 |
|
wrdf |
|- ( A e. Word X -> A : ( 0 ..^ ( # ` A ) ) --> X ) |
17 |
16
|
adantr |
|- ( ( A e. Word X /\ B e. X ) -> A : ( 0 ..^ ( # ` A ) ) --> X ) |
18 |
|
eqid |
|- { <. ( # ` A ) , B >. } = { <. ( # ` A ) , B >. } |
19 |
|
fsng |
|- ( ( ( # ` A ) e. NN0 /\ B e. X ) -> ( { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } <-> { <. ( # ` A ) , B >. } = { <. ( # ` A ) , B >. } ) ) |
20 |
18 19
|
mpbiri |
|- ( ( ( # ` A ) e. NN0 /\ B e. X ) -> { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } ) |
21 |
6 20
|
sylan |
|- ( ( A e. Word X /\ B e. X ) -> { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } ) |
22 |
|
fzodisjsn |
|- ( ( 0 ..^ ( # ` A ) ) i^i { ( # ` A ) } ) = (/) |
23 |
22
|
a1i |
|- ( ( A e. Word X /\ B e. X ) -> ( ( 0 ..^ ( # ` A ) ) i^i { ( # ` A ) } ) = (/) ) |
24 |
|
fun |
|- ( ( ( A : ( 0 ..^ ( # ` A ) ) --> X /\ { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } ) /\ ( ( 0 ..^ ( # ` A ) ) i^i { ( # ` A ) } ) = (/) ) -> ( A u. { <. ( # ` A ) , B >. } ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> ( X u. { B } ) ) |
25 |
17 21 23 24
|
syl21anc |
|- ( ( A e. Word X /\ B e. X ) -> ( A u. { <. ( # ` A ) , B >. } ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> ( X u. { B } ) ) |
26 |
25
|
ffnd |
|- ( ( A e. Word X /\ B e. X ) -> ( A u. { <. ( # ` A ) , B >. } ) Fn ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
27 |
|
elun |
|- ( x e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) <-> ( x e. ( 0 ..^ ( # ` A ) ) \/ x e. { ( # ` A ) } ) ) |
28 |
|
ccats1val1 |
|- ( ( A e. Word X /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ <" B "> ) ` x ) = ( A ` x ) ) |
29 |
28
|
adantlr |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ <" B "> ) ` x ) = ( A ` x ) ) |
30 |
|
simpr |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> x e. ( 0 ..^ ( # ` A ) ) ) |
31 |
|
fzonel |
|- -. ( # ` A ) e. ( 0 ..^ ( # ` A ) ) |
32 |
|
nelne2 |
|- ( ( x e. ( 0 ..^ ( # ` A ) ) /\ -. ( # ` A ) e. ( 0 ..^ ( # ` A ) ) ) -> x =/= ( # ` A ) ) |
33 |
30 31 32
|
sylancl |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> x =/= ( # ` A ) ) |
34 |
33
|
necomd |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( # ` A ) =/= x ) |
35 |
|
fvunsn |
|- ( ( # ` A ) =/= x -> ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) = ( A ` x ) ) |
36 |
34 35
|
syl |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) = ( A ` x ) ) |
37 |
29 36
|
eqtr4d |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
38 |
|
fvexd |
|- ( ( A e. Word X /\ B e. X ) -> ( # ` A ) e. _V ) |
39 |
|
simpr |
|- ( ( A e. Word X /\ B e. X ) -> B e. X ) |
40 |
17
|
fdmd |
|- ( ( A e. Word X /\ B e. X ) -> dom A = ( 0 ..^ ( # ` A ) ) ) |
41 |
40
|
eleq2d |
|- ( ( A e. Word X /\ B e. X ) -> ( ( # ` A ) e. dom A <-> ( # ` A ) e. ( 0 ..^ ( # ` A ) ) ) ) |
42 |
31 41
|
mtbiri |
|- ( ( A e. Word X /\ B e. X ) -> -. ( # ` A ) e. dom A ) |
43 |
|
fsnunfv |
|- ( ( ( # ` A ) e. _V /\ B e. X /\ -. ( # ` A ) e. dom A ) -> ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) = B ) |
44 |
38 39 42 43
|
syl3anc |
|- ( ( A e. Word X /\ B e. X ) -> ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) = B ) |
45 |
|
simpl |
|- ( ( A e. Word X /\ B e. X ) -> A e. Word X ) |
46 |
|
s1cl |
|- ( B e. X -> <" B "> e. Word X ) |
47 |
46
|
adantl |
|- ( ( A e. Word X /\ B e. X ) -> <" B "> e. Word X ) |
48 |
|
s1len |
|- ( # ` <" B "> ) = 1 |
49 |
|
1nn |
|- 1 e. NN |
50 |
48 49
|
eqeltri |
|- ( # ` <" B "> ) e. NN |
51 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` <" B "> ) ) <-> ( # ` <" B "> ) e. NN ) |
52 |
50 51
|
mpbir |
|- 0 e. ( 0 ..^ ( # ` <" B "> ) ) |
53 |
52
|
a1i |
|- ( ( A e. Word X /\ B e. X ) -> 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) |
54 |
|
ccatval3 |
|- ( ( A e. Word X /\ <" B "> e. Word X /\ 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
55 |
45 47 53 54
|
syl3anc |
|- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
56 |
|
s1fv |
|- ( B e. X -> ( <" B "> ` 0 ) = B ) |
57 |
56
|
adantl |
|- ( ( A e. Word X /\ B e. X ) -> ( <" B "> ` 0 ) = B ) |
58 |
55 57
|
eqtrd |
|- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = B ) |
59 |
6
|
adantr |
|- ( ( A e. Word X /\ B e. X ) -> ( # ` A ) e. NN0 ) |
60 |
59
|
nn0cnd |
|- ( ( A e. Word X /\ B e. X ) -> ( # ` A ) e. CC ) |
61 |
60
|
addid2d |
|- ( ( A e. Word X /\ B e. X ) -> ( 0 + ( # ` A ) ) = ( # ` A ) ) |
62 |
61
|
fveq2d |
|- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( ( A ++ <" B "> ) ` ( # ` A ) ) ) |
63 |
44 58 62
|
3eqtr2rd |
|- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( # ` A ) ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) ) |
64 |
|
elsni |
|- ( x e. { ( # ` A ) } -> x = ( # ` A ) ) |
65 |
64
|
fveq2d |
|- ( x e. { ( # ` A ) } -> ( ( A ++ <" B "> ) ` x ) = ( ( A ++ <" B "> ) ` ( # ` A ) ) ) |
66 |
64
|
fveq2d |
|- ( x e. { ( # ` A ) } -> ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) ) |
67 |
65 66
|
eqeq12d |
|- ( x e. { ( # ` A ) } -> ( ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) <-> ( ( A ++ <" B "> ) ` ( # ` A ) ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) ) ) |
68 |
63 67
|
syl5ibrcom |
|- ( ( A e. Word X /\ B e. X ) -> ( x e. { ( # ` A ) } -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) ) |
69 |
68
|
imp |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. { ( # ` A ) } ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
70 |
37 69
|
jaodan |
|- ( ( ( A e. Word X /\ B e. X ) /\ ( x e. ( 0 ..^ ( # ` A ) ) \/ x e. { ( # ` A ) } ) ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
71 |
27 70
|
sylan2b |
|- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
72 |
15 26 71
|
eqfnfvd |
|- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) = ( A u. { <. ( # ` A ) , B >. } ) ) |