Description: A category structure is a structure. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | catstr | |- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } Struct <. 1 , ; 1 5 >. |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn | |- 1 e. NN |
|
2 | basendx | |- ( Base ` ndx ) = 1 |
|
3 | 4nn0 | |- 4 e. NN0 |
|
4 | 1nn0 | |- 1 e. NN0 |
|
5 | 1lt10 | |- 1 < ; 1 0 |
|
6 | 1 3 4 5 | declti | |- 1 < ; 1 4 |
7 | 4nn | |- 4 e. NN |
|
8 | 4 7 | decnncl | |- ; 1 4 e. NN |
9 | homndx | |- ( Hom ` ndx ) = ; 1 4 |
|
10 | 5nn | |- 5 e. NN |
|
11 | 4lt5 | |- 4 < 5 |
|
12 | 4 3 10 11 | declt | |- ; 1 4 < ; 1 5 |
13 | 4 10 | decnncl | |- ; 1 5 e. NN |
14 | ccondx | |- ( comp ` ndx ) = ; 1 5 |
|
15 | 1 2 6 8 9 12 13 14 | strle3 | |- { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } Struct <. 1 , ; 1 5 >. |