Step |
Hyp |
Ref |
Expression |
1 |
|
caubl.2 |
|- ( ph -> D e. ( *Met ` X ) ) |
2 |
|
caubl.3 |
|- ( ph -> F : NN --> ( X X. RR+ ) ) |
3 |
|
caubl.4 |
|- ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) |
4 |
|
caubl.5 |
|- ( ph -> A. r e. RR+ E. n e. NN ( 2nd ` ( F ` n ) ) < r ) |
5 |
|
2fveq3 |
|- ( r = n -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` n ) ) ) |
6 |
5
|
sseq1d |
|- ( r = n -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
7 |
6
|
imbi2d |
|- ( r = n -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
8 |
|
2fveq3 |
|- ( r = k -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
9 |
8
|
sseq1d |
|- ( r = k -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
10 |
9
|
imbi2d |
|- ( r = k -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
11 |
|
2fveq3 |
|- ( r = ( k + 1 ) -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
12 |
11
|
sseq1d |
|- ( r = ( k + 1 ) -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
13 |
12
|
imbi2d |
|- ( r = ( k + 1 ) -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) <-> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
14 |
|
ssid |
|- ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) |
15 |
14
|
2a1i |
|- ( n e. ZZ -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
16 |
|
eluznn |
|- ( ( n e. NN /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) |
17 |
|
fvoveq1 |
|- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
18 |
17
|
fveq2d |
|- ( n = k -> ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
19 |
|
2fveq3 |
|- ( n = k -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
20 |
18 19
|
sseq12d |
|- ( n = k -> ( ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) ) |
21 |
20
|
rspccva |
|- ( ( A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) /\ k e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
22 |
3 16 21
|
syl2an |
|- ( ( ph /\ ( n e. NN /\ k e. ( ZZ>= ` n ) ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
23 |
22
|
anassrs |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
24 |
|
sstr2 |
|- ( ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
25 |
23 24
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
26 |
25
|
expcom |
|- ( k e. ( ZZ>= ` n ) -> ( ( ph /\ n e. NN ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
27 |
26
|
a2d |
|- ( k e. ( ZZ>= ` n ) -> ( ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) ) |
28 |
7 10 13 10 15 27
|
uzind4 |
|- ( k e. ( ZZ>= ` n ) -> ( ( ph /\ n e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
29 |
28
|
com12 |
|- ( ( ph /\ n e. NN ) -> ( k e. ( ZZ>= ` n ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
30 |
29
|
ad2ant2r |
|- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) ) |
31 |
|
relxp |
|- Rel ( X X. RR+ ) |
32 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> F : NN --> ( X X. RR+ ) ) |
33 |
|
simplrl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> n e. NN ) |
34 |
32 33
|
ffvelrnd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` n ) e. ( X X. RR+ ) ) |
35 |
|
1st2nd |
|- ( ( Rel ( X X. RR+ ) /\ ( F ` n ) e. ( X X. RR+ ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
36 |
31 34 35
|
sylancr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
37 |
36
|
fveq2d |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) ) |
38 |
|
df-ov |
|- ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) |
39 |
37 38
|
eqtr4di |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) ) |
40 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> D e. ( *Met ` X ) ) |
41 |
|
xp1st |
|- ( ( F ` n ) e. ( X X. RR+ ) -> ( 1st ` ( F ` n ) ) e. X ) |
42 |
34 41
|
syl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` n ) ) e. X ) |
43 |
|
xp2nd |
|- ( ( F ` n ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` n ) ) e. RR+ ) |
44 |
34 43
|
syl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) e. RR+ ) |
45 |
44
|
rpxrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) e. RR* ) |
46 |
|
simpllr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> r e. RR+ ) |
47 |
46
|
rpxrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> r e. RR* ) |
48 |
|
simplrr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) < r ) |
49 |
|
rpre |
|- ( ( 2nd ` ( F ` n ) ) e. RR+ -> ( 2nd ` ( F ` n ) ) e. RR ) |
50 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
51 |
|
ltle |
|- ( ( ( 2nd ` ( F ` n ) ) e. RR /\ r e. RR ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) |
52 |
49 50 51
|
syl2an |
|- ( ( ( 2nd ` ( F ` n ) ) e. RR+ /\ r e. RR+ ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) |
53 |
44 46 52
|
syl2anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 2nd ` ( F ` n ) ) < r -> ( 2nd ` ( F ` n ) ) <_ r ) ) |
54 |
48 53
|
mpd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` n ) ) <_ r ) |
55 |
|
ssbl |
|- ( ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` n ) ) e. X ) /\ ( ( 2nd ` ( F ` n ) ) e. RR* /\ r e. RR* ) /\ ( 2nd ` ( F ` n ) ) <_ r ) -> ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) |
56 |
40 42 45 47 54 55
|
syl221anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1st ` ( F ` n ) ) ( ball ` D ) ( 2nd ` ( F ` n ) ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) |
57 |
39 56
|
eqsstrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) |
58 |
|
sstr2 |
|- ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ( ball ` D ) ` ( F ` n ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
59 |
57 58
|
syl5com |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
60 |
|
simprl |
|- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> n e. NN ) |
61 |
60 16
|
sylan |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) |
62 |
32 61
|
ffvelrnd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) e. ( X X. RR+ ) ) |
63 |
|
xp1st |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( 1st ` ( F ` k ) ) e. X ) |
64 |
62 63
|
syl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. X ) |
65 |
|
xp2nd |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
66 |
62 65
|
syl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
67 |
|
blcntr |
|- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` k ) ) e. X /\ ( 2nd ` ( F ` k ) ) e. RR+ ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
68 |
40 64 66 67
|
syl3anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
69 |
|
1st2nd |
|- ( ( Rel ( X X. RR+ ) /\ ( F ` k ) e. ( X X. RR+ ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
70 |
31 62 69
|
sylancr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
71 |
70
|
fveq2d |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) |
72 |
|
df-ov |
|- ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
73 |
71 72
|
eqtr4di |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
74 |
68 73
|
eleqtrrd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( ball ` D ) ` ( F ` k ) ) ) |
75 |
|
ssel |
|- ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) -> ( ( 1st ` ( F ` k ) ) e. ( ( ball ` D ) ` ( F ` k ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
76 |
59 74 75
|
syl6ci |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) ) ) |
77 |
|
elbl2 |
|- ( ( ( D e. ( *Met ` X ) /\ r e. RR* ) /\ ( ( 1st ` ( F ` n ) ) e. X /\ ( 1st ` ( F ` k ) ) e. X ) ) -> ( ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) <-> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
78 |
40 47 42 64 77
|
syl22anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` n ) ) ( ball ` D ) r ) <-> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
79 |
76 78
|
sylibd |
|- ( ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) /\ k e. ( ZZ>= ` n ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
80 |
79
|
ex |
|- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) ) |
81 |
30 80
|
mpdd |
|- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> ( k e. ( ZZ>= ` n ) -> ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
82 |
81
|
ralrimiv |
|- ( ( ( ph /\ r e. RR+ ) /\ ( n e. NN /\ ( 2nd ` ( F ` n ) ) < r ) ) -> A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) |
83 |
82
|
expr |
|- ( ( ( ph /\ r e. RR+ ) /\ n e. NN ) -> ( ( 2nd ` ( F ` n ) ) < r -> A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
84 |
83
|
reximdva |
|- ( ( ph /\ r e. RR+ ) -> ( E. n e. NN ( 2nd ` ( F ` n ) ) < r -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
85 |
84
|
ralimdva |
|- ( ph -> ( A. r e. RR+ E. n e. NN ( 2nd ` ( F ` n ) ) < r -> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
86 |
4 85
|
mpd |
|- ( ph -> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) |
87 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
88 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
89 |
|
fvco3 |
|- ( ( F : NN --> ( X X. RR+ ) /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
90 |
2 89
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
91 |
|
fvco3 |
|- ( ( F : NN --> ( X X. RR+ ) /\ n e. NN ) -> ( ( 1st o. F ) ` n ) = ( 1st ` ( F ` n ) ) ) |
92 |
2 91
|
sylan |
|- ( ( ph /\ n e. NN ) -> ( ( 1st o. F ) ` n ) = ( 1st ` ( F ` n ) ) ) |
93 |
|
1stcof |
|- ( F : NN --> ( X X. RR+ ) -> ( 1st o. F ) : NN --> X ) |
94 |
2 93
|
syl |
|- ( ph -> ( 1st o. F ) : NN --> X ) |
95 |
87 1 88 90 92 94
|
iscauf |
|- ( ph -> ( ( 1st o. F ) e. ( Cau ` D ) <-> A. r e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( 1st ` ( F ` n ) ) D ( 1st ` ( F ` k ) ) ) < r ) ) |
96 |
86 95
|
mpbird |
|- ( ph -> ( 1st o. F ) e. ( Cau ` D ) ) |