Step |
Hyp |
Ref |
Expression |
1 |
|
caubl.2 |
|- ( ph -> D e. ( *Met ` X ) ) |
2 |
|
caubl.3 |
|- ( ph -> F : NN --> ( X X. RR+ ) ) |
3 |
|
caubl.4 |
|- ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) |
4 |
|
caublcls.6 |
|- J = ( MetOpen ` D ) |
5 |
|
eqid |
|- ( ZZ>= ` A ) = ( ZZ>= ` A ) |
6 |
1
|
3ad2ant1 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> D e. ( *Met ` X ) ) |
7 |
4
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
8 |
6 7
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> J e. ( TopOn ` X ) ) |
9 |
|
simp3 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. NN ) |
10 |
9
|
nnzd |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. ZZ ) |
11 |
|
simp2 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st o. F ) ( ~~>t ` J ) P ) |
12 |
|
2fveq3 |
|- ( r = A -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` A ) ) ) |
13 |
12
|
sseq1d |
|- ( r = A -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
14 |
13
|
imbi2d |
|- ( r = A -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
15 |
|
2fveq3 |
|- ( r = k -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
16 |
15
|
sseq1d |
|- ( r = k -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
17 |
16
|
imbi2d |
|- ( r = k -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
18 |
|
2fveq3 |
|- ( r = ( k + 1 ) -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
19 |
18
|
sseq1d |
|- ( r = ( k + 1 ) -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
20 |
19
|
imbi2d |
|- ( r = ( k + 1 ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
21 |
|
ssid |
|- ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) |
22 |
21
|
2a1i |
|- ( A e. ZZ -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
23 |
|
eluznn |
|- ( ( A e. NN /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
24 |
|
fvoveq1 |
|- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
25 |
24
|
fveq2d |
|- ( n = k -> ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
26 |
|
2fveq3 |
|- ( n = k -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
27 |
25 26
|
sseq12d |
|- ( n = k -> ( ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) ) |
28 |
27
|
rspccva |
|- ( ( A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) /\ k e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
29 |
3 23 28
|
syl2an |
|- ( ( ph /\ ( A e. NN /\ k e. ( ZZ>= ` A ) ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
30 |
29
|
anassrs |
|- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
31 |
|
sstr2 |
|- ( ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
32 |
30 31
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
33 |
32
|
expcom |
|- ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
34 |
33
|
a2d |
|- ( k e. ( ZZ>= ` A ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
35 |
14 17 20 17 22 34
|
uzind4 |
|- ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
36 |
35
|
impcom |
|- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) |
37 |
36
|
3adantl2 |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) |
38 |
6
|
adantr |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> D e. ( *Met ` X ) ) |
39 |
|
simpl1 |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ph ) |
40 |
39 2
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> F : NN --> ( X X. RR+ ) ) |
41 |
23
|
3ad2antl3 |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
42 |
40 41
|
ffvelrnd |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) e. ( X X. RR+ ) ) |
43 |
|
xp1st |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( 1st ` ( F ` k ) ) e. X ) |
44 |
42 43
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. X ) |
45 |
|
xp2nd |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
46 |
42 45
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
47 |
|
blcntr |
|- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` k ) ) e. X /\ ( 2nd ` ( F ` k ) ) e. RR+ ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
48 |
38 44 46 47
|
syl3anc |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
49 |
|
fvco3 |
|- ( ( F : NN --> ( X X. RR+ ) /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
50 |
40 41 49
|
syl2anc |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
51 |
|
1st2nd2 |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
52 |
42 51
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
53 |
52
|
fveq2d |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) |
54 |
|
df-ov |
|- ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
55 |
53 54
|
eqtr4di |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
56 |
48 50 55
|
3eltr4d |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` k ) ) ) |
57 |
37 56
|
sseldd |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` A ) ) ) |
58 |
2
|
ffvelrnda |
|- ( ( ph /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) |
59 |
58
|
3adant2 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) |
60 |
|
1st2nd2 |
|- ( ( F ` A ) e. ( X X. RR+ ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
61 |
59 60
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
62 |
61
|
fveq2d |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) ) |
63 |
|
df-ov |
|- ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
64 |
62 63
|
eqtr4di |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) ) |
65 |
|
xp1st |
|- ( ( F ` A ) e. ( X X. RR+ ) -> ( 1st ` ( F ` A ) ) e. X ) |
66 |
59 65
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st ` ( F ` A ) ) e. X ) |
67 |
|
xp2nd |
|- ( ( F ` A ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) |
68 |
59 67
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) |
69 |
68
|
rpxrd |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR* ) |
70 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` A ) ) e. X /\ ( 2nd ` ( F ` A ) ) e. RR* ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) |
71 |
6 66 69 70
|
syl3anc |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) |
72 |
64 71
|
eqsstrd |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ X ) |
73 |
5 8 10 11 57 72
|
lmcls |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> P e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( F ` A ) ) ) ) |