| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caubl.2 |
|- ( ph -> D e. ( *Met ` X ) ) |
| 2 |
|
caubl.3 |
|- ( ph -> F : NN --> ( X X. RR+ ) ) |
| 3 |
|
caubl.4 |
|- ( ph -> A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) ) |
| 4 |
|
caublcls.6 |
|- J = ( MetOpen ` D ) |
| 5 |
|
eqid |
|- ( ZZ>= ` A ) = ( ZZ>= ` A ) |
| 6 |
1
|
3ad2ant1 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> D e. ( *Met ` X ) ) |
| 7 |
4
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 8 |
6 7
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> J e. ( TopOn ` X ) ) |
| 9 |
|
simp3 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. NN ) |
| 10 |
9
|
nnzd |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> A e. ZZ ) |
| 11 |
|
simp2 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st o. F ) ( ~~>t ` J ) P ) |
| 12 |
|
2fveq3 |
|- ( r = A -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` A ) ) ) |
| 13 |
12
|
sseq1d |
|- ( r = A -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 14 |
13
|
imbi2d |
|- ( r = A -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 15 |
|
2fveq3 |
|- ( r = k -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
| 16 |
15
|
sseq1d |
|- ( r = k -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 17 |
16
|
imbi2d |
|- ( r = k -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 18 |
|
2fveq3 |
|- ( r = ( k + 1 ) -> ( ( ball ` D ) ` ( F ` r ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
| 19 |
18
|
sseq1d |
|- ( r = ( k + 1 ) -> ( ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 20 |
19
|
imbi2d |
|- ( r = ( k + 1 ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` r ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) <-> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 21 |
|
ssid |
|- ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) |
| 22 |
21
|
2a1i |
|- ( A e. ZZ -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 23 |
|
eluznn |
|- ( ( A e. NN /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
| 24 |
|
fvoveq1 |
|- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
| 25 |
24
|
fveq2d |
|- ( n = k -> ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) = ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) ) |
| 26 |
|
2fveq3 |
|- ( n = k -> ( ( ball ` D ) ` ( F ` n ) ) = ( ( ball ` D ) ` ( F ` k ) ) ) |
| 27 |
25 26
|
sseq12d |
|- ( n = k -> ( ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) <-> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) ) |
| 28 |
27
|
rspccva |
|- ( ( A. n e. NN ( ( ball ` D ) ` ( F ` ( n + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` n ) ) /\ k e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 29 |
3 23 28
|
syl2an |
|- ( ( ph /\ ( A e. NN /\ k e. ( ZZ>= ` A ) ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 30 |
29
|
anassrs |
|- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) ) |
| 31 |
|
sstr2 |
|- ( ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` k ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 33 |
32
|
expcom |
|- ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 34 |
33
|
a2d |
|- ( k e. ( ZZ>= ` A ) -> ( ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) ) |
| 35 |
14 17 20 17 22 34
|
uzind4 |
|- ( k e. ( ZZ>= ` A ) -> ( ( ph /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) ) |
| 36 |
35
|
impcom |
|- ( ( ( ph /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) |
| 37 |
36
|
3adantl2 |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) C_ ( ( ball ` D ) ` ( F ` A ) ) ) |
| 38 |
6
|
adantr |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> D e. ( *Met ` X ) ) |
| 39 |
|
simpl1 |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ph ) |
| 40 |
39 2
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> F : NN --> ( X X. RR+ ) ) |
| 41 |
23
|
3ad2antl3 |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
| 42 |
40 41
|
ffvelcdmd |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) e. ( X X. RR+ ) ) |
| 43 |
|
xp1st |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( 1st ` ( F ` k ) ) e. X ) |
| 44 |
42 43
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. X ) |
| 45 |
|
xp2nd |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
| 46 |
42 45
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 2nd ` ( F ` k ) ) e. RR+ ) |
| 47 |
|
blcntr |
|- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` k ) ) e. X /\ ( 2nd ` ( F ` k ) ) e. RR+ ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
| 48 |
38 44 46 47
|
syl3anc |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( 1st ` ( F ` k ) ) e. ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
| 49 |
|
fvco3 |
|- ( ( F : NN --> ( X X. RR+ ) /\ k e. NN ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
| 50 |
40 41 49
|
syl2anc |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) = ( 1st ` ( F ` k ) ) ) |
| 51 |
|
1st2nd2 |
|- ( ( F ` k ) e. ( X X. RR+ ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
| 52 |
42 51
|
syl |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
| 53 |
52
|
fveq2d |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) |
| 54 |
|
df-ov |
|- ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
| 55 |
53 54
|
eqtr4di |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( ball ` D ) ` ( F ` k ) ) = ( ( 1st ` ( F ` k ) ) ( ball ` D ) ( 2nd ` ( F ` k ) ) ) ) |
| 56 |
48 50 55
|
3eltr4d |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` k ) ) ) |
| 57 |
37 56
|
sseldd |
|- ( ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( 1st o. F ) ` k ) e. ( ( ball ` D ) ` ( F ` A ) ) ) |
| 58 |
2
|
ffvelcdmda |
|- ( ( ph /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) |
| 59 |
58
|
3adant2 |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) e. ( X X. RR+ ) ) |
| 60 |
|
1st2nd2 |
|- ( ( F ` A ) e. ( X X. RR+ ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
| 61 |
59 60
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( F ` A ) = <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
| 62 |
61
|
fveq2d |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) ) |
| 63 |
|
df-ov |
|- ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( F ` A ) ) , ( 2nd ` ( F ` A ) ) >. ) |
| 64 |
62 63
|
eqtr4di |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) = ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) ) |
| 65 |
|
xp1st |
|- ( ( F ` A ) e. ( X X. RR+ ) -> ( 1st ` ( F ` A ) ) e. X ) |
| 66 |
59 65
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 1st ` ( F ` A ) ) e. X ) |
| 67 |
|
xp2nd |
|- ( ( F ` A ) e. ( X X. RR+ ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) |
| 68 |
59 67
|
syl |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR+ ) |
| 69 |
68
|
rpxrd |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( 2nd ` ( F ` A ) ) e. RR* ) |
| 70 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( F ` A ) ) e. X /\ ( 2nd ` ( F ` A ) ) e. RR* ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) |
| 71 |
6 66 69 70
|
syl3anc |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( 1st ` ( F ` A ) ) ( ball ` D ) ( 2nd ` ( F ` A ) ) ) C_ X ) |
| 72 |
64 71
|
eqsstrd |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> ( ( ball ` D ) ` ( F ` A ) ) C_ X ) |
| 73 |
5 8 10 11 57 72
|
lmcls |
|- ( ( ph /\ ( 1st o. F ) ( ~~>t ` J ) P /\ A e. NN ) -> P e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( F ` A ) ) ) ) |