| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caucvgbf.1 |
|- F/_ j F |
| 2 |
|
caucvgbf.2 |
|- F/_ k F |
| 3 |
|
caucvgbf.3 |
|- Z = ( ZZ>= ` M ) |
| 4 |
3
|
caucvgb |
|- ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) ) ) |
| 5 |
|
nfcv |
|- F/_ j ( ZZ>= ` i ) |
| 6 |
|
nfcv |
|- F/_ j l |
| 7 |
1 6
|
nffv |
|- F/_ j ( F ` l ) |
| 8 |
7
|
nfel1 |
|- F/ j ( F ` l ) e. CC |
| 9 |
|
nfcv |
|- F/_ j abs |
| 10 |
|
nfcv |
|- F/_ j - |
| 11 |
|
nfcv |
|- F/_ j i |
| 12 |
1 11
|
nffv |
|- F/_ j ( F ` i ) |
| 13 |
7 10 12
|
nfov |
|- F/_ j ( ( F ` l ) - ( F ` i ) ) |
| 14 |
9 13
|
nffv |
|- F/_ j ( abs ` ( ( F ` l ) - ( F ` i ) ) ) |
| 15 |
|
nfcv |
|- F/_ j < |
| 16 |
|
nfcv |
|- F/_ j x |
| 17 |
14 15 16
|
nfbr |
|- F/ j ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x |
| 18 |
8 17
|
nfan |
|- F/ j ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) |
| 19 |
5 18
|
nfralw |
|- F/ j A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) |
| 20 |
|
nfv |
|- F/ i A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) |
| 21 |
|
nfcv |
|- F/_ k l |
| 22 |
2 21
|
nffv |
|- F/_ k ( F ` l ) |
| 23 |
22
|
nfel1 |
|- F/ k ( F ` l ) e. CC |
| 24 |
|
nfcv |
|- F/_ k abs |
| 25 |
|
nfcv |
|- F/_ k - |
| 26 |
|
nfcv |
|- F/_ k i |
| 27 |
2 26
|
nffv |
|- F/_ k ( F ` i ) |
| 28 |
22 25 27
|
nfov |
|- F/_ k ( ( F ` l ) - ( F ` i ) ) |
| 29 |
24 28
|
nffv |
|- F/_ k ( abs ` ( ( F ` l ) - ( F ` i ) ) ) |
| 30 |
|
nfcv |
|- F/_ k < |
| 31 |
|
nfcv |
|- F/_ k x |
| 32 |
29 30 31
|
nfbr |
|- F/ k ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x |
| 33 |
23 32
|
nfan |
|- F/ k ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) |
| 34 |
|
nfv |
|- F/ l ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) |
| 35 |
|
fveq2 |
|- ( l = k -> ( F ` l ) = ( F ` k ) ) |
| 36 |
35
|
eleq1d |
|- ( l = k -> ( ( F ` l ) e. CC <-> ( F ` k ) e. CC ) ) |
| 37 |
35
|
fvoveq1d |
|- ( l = k -> ( abs ` ( ( F ` l ) - ( F ` i ) ) ) = ( abs ` ( ( F ` k ) - ( F ` i ) ) ) ) |
| 38 |
37
|
breq1d |
|- ( l = k -> ( ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) ) |
| 39 |
36 38
|
anbi12d |
|- ( l = k -> ( ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) ) ) |
| 40 |
33 34 39
|
cbvralw |
|- ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) ) |
| 41 |
|
fveq2 |
|- ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) ) |
| 42 |
|
fveq2 |
|- ( i = j -> ( F ` i ) = ( F ` j ) ) |
| 43 |
42
|
oveq2d |
|- ( i = j -> ( ( F ` k ) - ( F ` i ) ) = ( ( F ` k ) - ( F ` j ) ) ) |
| 44 |
43
|
fveq2d |
|- ( i = j -> ( abs ` ( ( F ` k ) - ( F ` i ) ) ) = ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 45 |
44
|
breq1d |
|- ( i = j -> ( ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
| 46 |
45
|
anbi2d |
|- ( i = j -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) |
| 47 |
41 46
|
raleqbidv |
|- ( i = j -> ( A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) |
| 48 |
40 47
|
bitrid |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) |
| 49 |
19 20 48
|
cbvrexw |
|- ( E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
| 50 |
49
|
ralbii |
|- ( A. x e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
| 51 |
4 50
|
bitrdi |
|- ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) |