Metamath Proof Explorer


Theorem caufpm

Description: Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 24-Dec-2013)

Ref Expression
Assertion caufpm
|- ( ( D e. ( *Met ` X ) /\ F e. ( Cau ` D ) ) -> F e. ( X ^pm CC ) )

Proof

Step Hyp Ref Expression
1 iscau
 |-  ( D e. ( *Met ` X ) -> ( F e. ( Cau ` D ) <-> ( F e. ( X ^pm CC ) /\ A. x e. RR+ E. y e. ZZ ( F |` ( ZZ>= ` y ) ) : ( ZZ>= ` y ) --> ( ( F ` y ) ( ball ` D ) x ) ) ) )
2 1 simprbda
 |-  ( ( D e. ( *Met ` X ) /\ F e. ( Cau ` D ) ) -> F e. ( X ^pm CC ) )