Step |
Hyp |
Ref |
Expression |
1 |
|
df-cau |
|- Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) } ) |
2 |
|
dmeq |
|- ( d = D -> dom d = dom D ) |
3 |
2
|
dmeqd |
|- ( d = D -> dom dom d = dom dom D ) |
4 |
|
xmetf |
|- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
5 |
4
|
fdmd |
|- ( D e. ( *Met ` X ) -> dom D = ( X X. X ) ) |
6 |
5
|
dmeqd |
|- ( D e. ( *Met ` X ) -> dom dom D = dom ( X X. X ) ) |
7 |
|
dmxpid |
|- dom ( X X. X ) = X |
8 |
6 7
|
eqtrdi |
|- ( D e. ( *Met ` X ) -> dom dom D = X ) |
9 |
3 8
|
sylan9eqr |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> dom dom d = X ) |
10 |
9
|
oveq1d |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( dom dom d ^pm CC ) = ( X ^pm CC ) ) |
11 |
|
simpr |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> d = D ) |
12 |
11
|
fveq2d |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ball ` d ) = ( ball ` D ) ) |
13 |
12
|
oveqd |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ( f ` k ) ( ball ` d ) x ) = ( ( f ` k ) ( ball ` D ) x ) ) |
14 |
13
|
feq3d |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) |
15 |
14
|
rexbidv |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) |
16 |
15
|
ralbidv |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) |
17 |
10 16
|
rabeqbidv |
|- ( ( D e. ( *Met ` X ) /\ d = D ) -> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) } = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) |
18 |
|
fvssunirn |
|- ( *Met ` X ) C_ U. ran *Met |
19 |
18
|
sseli |
|- ( D e. ( *Met ` X ) -> D e. U. ran *Met ) |
20 |
|
ovex |
|- ( X ^pm CC ) e. _V |
21 |
20
|
rabex |
|- { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } e. _V |
22 |
21
|
a1i |
|- ( D e. ( *Met ` X ) -> { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } e. _V ) |
23 |
1 17 19 22
|
fvmptd2 |
|- ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) |