| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chcoeffeq.a |
|- A = ( N Mat R ) |
| 2 |
|
chcoeffeq.b |
|- B = ( Base ` A ) |
| 3 |
|
chcoeffeq.p |
|- P = ( Poly1 ` R ) |
| 4 |
|
chcoeffeq.y |
|- Y = ( N Mat P ) |
| 5 |
|
chcoeffeq.r |
|- .X. = ( .r ` Y ) |
| 6 |
|
chcoeffeq.s |
|- .- = ( -g ` Y ) |
| 7 |
|
chcoeffeq.0 |
|- .0. = ( 0g ` Y ) |
| 8 |
|
chcoeffeq.t |
|- T = ( N matToPolyMat R ) |
| 9 |
|
chcoeffeq.c |
|- C = ( N CharPlyMat R ) |
| 10 |
|
chcoeffeq.k |
|- K = ( C ` M ) |
| 11 |
|
chcoeffeq.g |
|- G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) |
| 12 |
|
chcoeffeq.w |
|- W = ( Base ` Y ) |
| 13 |
|
chcoeffeq.1 |
|- .1. = ( 1r ` A ) |
| 14 |
|
chcoeffeq.m |
|- .* = ( .s ` A ) |
| 15 |
|
chcoeffeq.u |
|- U = ( N cPolyMatToMat R ) |
| 16 |
|
cayhamlem.e1 |
|- .^ = ( .g ` ( mulGrp ` A ) ) |
| 17 |
|
cayhamlem.r |
|- .x. = ( .r ` A ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
chcoeffeq |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) |
| 19 |
|
2fveq3 |
|- ( n = l -> ( U ` ( G ` n ) ) = ( U ` ( G ` l ) ) ) |
| 20 |
|
fveq2 |
|- ( n = l -> ( ( coe1 ` K ) ` n ) = ( ( coe1 ` K ) ` l ) ) |
| 21 |
20
|
oveq1d |
|- ( n = l -> ( ( ( coe1 ` K ) ` n ) .* .1. ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) |
| 22 |
19 21
|
eqeq12d |
|- ( n = l -> ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) <-> ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) ) |
| 23 |
22
|
cbvralvw |
|- ( A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) <-> A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) |
| 24 |
|
2fveq3 |
|- ( l = n -> ( U ` ( G ` l ) ) = ( U ` ( G ` n ) ) ) |
| 25 |
|
fveq2 |
|- ( l = n -> ( ( coe1 ` K ) ` l ) = ( ( coe1 ` K ) ` n ) ) |
| 26 |
25
|
oveq1d |
|- ( l = n -> ( ( ( coe1 ` K ) ` l ) .* .1. ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) |
| 27 |
24 26
|
eqeq12d |
|- ( l = n -> ( ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) <-> ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |
| 28 |
27
|
rspccva |
|- ( ( A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) /\ n e. NN0 ) -> ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) |
| 29 |
|
simprll |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( N e. Fin /\ R e. CRing /\ M e. B ) ) |
| 30 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 31 |
9 1 2 3 30
|
chpmatply1 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) |
| 32 |
29 31
|
syl |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( C ` M ) e. ( Base ` P ) ) |
| 33 |
10 32
|
eqeltrid |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> K e. ( Base ` P ) ) |
| 34 |
|
eqid |
|- ( coe1 ` K ) = ( coe1 ` K ) |
| 35 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 36 |
34 30 3 35
|
coe1f |
|- ( K e. ( Base ` P ) -> ( coe1 ` K ) : NN0 --> ( Base ` R ) ) |
| 37 |
33 36
|
syl |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( coe1 ` K ) : NN0 --> ( Base ` R ) ) |
| 38 |
|
fvex |
|- ( Base ` R ) e. _V |
| 39 |
|
nn0ex |
|- NN0 e. _V |
| 40 |
38 39
|
pm3.2i |
|- ( ( Base ` R ) e. _V /\ NN0 e. _V ) |
| 41 |
|
elmapg |
|- ( ( ( Base ` R ) e. _V /\ NN0 e. _V ) -> ( ( coe1 ` K ) e. ( ( Base ` R ) ^m NN0 ) <-> ( coe1 ` K ) : NN0 --> ( Base ` R ) ) ) |
| 42 |
40 41
|
mp1i |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( coe1 ` K ) e. ( ( Base ` R ) ^m NN0 ) <-> ( coe1 ` K ) : NN0 --> ( Base ` R ) ) ) |
| 43 |
37 42
|
mpbird |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( coe1 ` K ) e. ( ( Base ` R ) ^m NN0 ) ) |
| 44 |
|
simpl |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> n e. NN0 ) |
| 45 |
35 1 2 13 14 16 17
|
cayhamlem2 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( ( coe1 ` K ) e. ( ( Base ` R ) ^m NN0 ) /\ n e. NN0 ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |
| 46 |
29 43 44 45
|
syl12anc |
|- ( ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |
| 47 |
46
|
adantl |
|- ( ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) /\ ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |
| 48 |
|
oveq2 |
|- ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) -> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) = ( ( n .^ M ) .x. ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |
| 49 |
48
|
adantr |
|- ( ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) /\ ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) ) -> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) = ( ( n .^ M ) .x. ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |
| 50 |
47 49
|
eqtr4d |
|- ( ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) /\ ( n e. NN0 /\ ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) |
| 51 |
50
|
exp32 |
|- ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) -> ( n e. NN0 -> ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) |
| 52 |
51
|
com12 |
|- ( n e. NN0 -> ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) -> ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) |
| 53 |
52
|
adantl |
|- ( ( A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) /\ n e. NN0 ) -> ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) -> ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) |
| 54 |
28 53
|
mpd |
|- ( ( A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) /\ n e. NN0 ) -> ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) |
| 55 |
54
|
com12 |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( ( A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) /\ n e. NN0 ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) |
| 56 |
55
|
impl |
|- ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) /\ n e. NN0 ) -> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) = ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) |
| 57 |
56
|
mpteq2dva |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) -> ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) ) = ( n e. NN0 |-> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) |
| 58 |
57
|
oveq2d |
|- ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) /\ A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) -> ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) |
| 59 |
58
|
ex |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) -> ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) ) |
| 60 |
23 59
|
biimtrid |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) -> ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) ) |
| 61 |
60
|
reximdva |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) -> ( E. b e. ( B ^m ( 0 ... s ) ) A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) -> E. b e. ( B ^m ( 0 ... s ) ) ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) ) |
| 62 |
61
|
reximdva |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) ) |
| 63 |
18 62
|
mpd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` K ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( n .^ M ) .x. ( U ` ( G ` n ) ) ) ) ) ) |