Step |
Hyp |
Ref |
Expression |
1 |
|
cayleyhamilton0.a |
|- A = ( N Mat R ) |
2 |
|
cayleyhamilton0.b |
|- B = ( Base ` A ) |
3 |
|
cayleyhamilton0.0 |
|- .0. = ( 0g ` A ) |
4 |
|
cayleyhamilton0.1 |
|- .1. = ( 1r ` A ) |
5 |
|
cayleyhamilton0.m |
|- .* = ( .s ` A ) |
6 |
|
cayleyhamilton0.e1 |
|- .^ = ( .g ` ( mulGrp ` A ) ) |
7 |
|
cayleyhamilton0.c |
|- C = ( N CharPlyMat R ) |
8 |
|
cayleyhamilton0.k |
|- K = ( coe1 ` ( C ` M ) ) |
9 |
|
cayleyhamilton0.p |
|- P = ( Poly1 ` R ) |
10 |
|
cayleyhamilton0.y |
|- Y = ( N Mat P ) |
11 |
|
cayleyhamilton0.r |
|- .X. = ( .r ` Y ) |
12 |
|
cayleyhamilton0.s |
|- .- = ( -g ` Y ) |
13 |
|
cayleyhamilton0.z |
|- Z = ( 0g ` Y ) |
14 |
|
cayleyhamilton0.w |
|- W = ( Base ` Y ) |
15 |
|
cayleyhamilton0.e2 |
|- E = ( .g ` ( mulGrp ` Y ) ) |
16 |
|
cayleyhamilton0.t |
|- T = ( N matToPolyMat R ) |
17 |
|
cayleyhamilton0.g |
|- G = ( n e. NN0 |-> if ( n = 0 , ( Z .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , Z , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) |
18 |
|
cayleyhamilton0.u |
|- U = ( N cPolyMatToMat R ) |
19 |
|
eqid |
|- ( C ` M ) = ( C ` M ) |
20 |
1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15
|
cayhamlem4 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) |
21 |
8
|
eqcomi |
|- ( coe1 ` ( C ` M ) ) = K |
22 |
21
|
a1i |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ n e. NN0 ) -> ( coe1 ` ( C ` M ) ) = K ) |
23 |
22
|
fveq1d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( C ` M ) ) ` n ) = ( K ` n ) ) |
24 |
23
|
oveq1d |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ n e. NN0 ) -> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) = ( ( K ` n ) .* ( n .^ M ) ) ) |
25 |
24
|
mpteq2dva |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) = ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) |
26 |
25
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) ) |
27 |
26
|
eqeq1d |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) <-> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) ) |
28 |
27
|
biimpa |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) |
29 |
|
oveq1 |
|- ( n = l -> ( n E ( T ` M ) ) = ( l E ( T ` M ) ) ) |
30 |
|
fveq2 |
|- ( n = l -> ( G ` n ) = ( G ` l ) ) |
31 |
29 30
|
oveq12d |
|- ( n = l -> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) = ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) |
32 |
31
|
cbvmptv |
|- ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) = ( l e. NN0 |-> ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) |
33 |
32
|
oveq2i |
|- ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = ( Y gsum ( l e. NN0 |-> ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) ) |
34 |
1 2 9 10 11 12 13 16 17 15
|
cayhamlem1 |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( Y gsum ( l e. NN0 |-> ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) ) = Z ) |
35 |
33 34
|
eqtrid |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = Z ) |
36 |
|
fveq2 |
|- ( ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = Z -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = ( U ` Z ) ) |
37 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
38 |
37
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
39 |
38
|
3adant3 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) |
40 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
41 |
1 18 9 10 40 13
|
m2cpminv0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( U ` Z ) = ( 0g ` A ) ) |
42 |
39 41
|
syl |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( U ` Z ) = ( 0g ` A ) ) |
43 |
42 3
|
eqtr4di |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( U ` Z ) = .0. ) |
44 |
43
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U ` Z ) = .0. ) |
45 |
36 44
|
sylan9eqr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = Z ) -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = .0. ) |
46 |
35 45
|
mpdan |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = .0. ) |
47 |
46
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = .0. ) |
48 |
28 47
|
eqtrd |
|- ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) |
49 |
48
|
ex |
|- ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) ) |
50 |
49
|
rexlimdvva |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) ) |
51 |
20 50
|
mpd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) |