Step |
Hyp |
Ref |
Expression |
1 |
|
cbv1v.1 |
|- F/ x ph |
2 |
|
cbv1v.2 |
|- F/ y ph |
3 |
|
cbv1v.3 |
|- ( ph -> F/ y ps ) |
4 |
|
cbv1v.4 |
|- ( ph -> F/ x ch ) |
5 |
|
cbv1v.5 |
|- ( ph -> ( x = y -> ( ps -> ch ) ) ) |
6 |
2 3
|
nfim1 |
|- F/ y ( ph -> ps ) |
7 |
1 4
|
nfim1 |
|- F/ x ( ph -> ch ) |
8 |
5
|
com12 |
|- ( x = y -> ( ph -> ( ps -> ch ) ) ) |
9 |
8
|
a2d |
|- ( x = y -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) |
10 |
6 7 9
|
cbv3v |
|- ( A. x ( ph -> ps ) -> A. y ( ph -> ch ) ) |
11 |
1
|
19.21 |
|- ( A. x ( ph -> ps ) <-> ( ph -> A. x ps ) ) |
12 |
2
|
19.21 |
|- ( A. y ( ph -> ch ) <-> ( ph -> A. y ch ) ) |
13 |
10 11 12
|
3imtr3i |
|- ( ( ph -> A. x ps ) -> ( ph -> A. y ch ) ) |
14 |
13
|
pm2.86i |
|- ( ph -> ( A. x ps -> A. y ch ) ) |