Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Gino Giotto, 10-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbv2w.1 | |- F/ x ph |
|
cbv2w.2 | |- F/ y ph |
||
cbv2w.3 | |- ( ph -> F/ y ps ) |
||
cbv2w.4 | |- ( ph -> F/ x ch ) |
||
cbv2w.5 | |- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
||
Assertion | cbv2w | |- ( ph -> ( A. x ps <-> A. y ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2w.1 | |- F/ x ph |
|
2 | cbv2w.2 | |- F/ y ph |
|
3 | cbv2w.3 | |- ( ph -> F/ y ps ) |
|
4 | cbv2w.4 | |- ( ph -> F/ x ch ) |
|
5 | cbv2w.5 | |- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
|
6 | biimp | |- ( ( ps <-> ch ) -> ( ps -> ch ) ) |
|
7 | 5 6 | syl6 | |- ( ph -> ( x = y -> ( ps -> ch ) ) ) |
8 | 1 2 3 4 7 | cbv1v | |- ( ph -> ( A. x ps -> A. y ch ) ) |
9 | equcomi | |- ( y = x -> x = y ) |
|
10 | biimpr | |- ( ( ps <-> ch ) -> ( ch -> ps ) ) |
|
11 | 9 5 10 | syl56 | |- ( ph -> ( y = x -> ( ch -> ps ) ) ) |
12 | 2 1 4 3 11 | cbv1v | |- ( ph -> ( A. y ch -> A. x ps ) ) |
13 | 8 12 | impbid | |- ( ph -> ( A. x ps <-> A. y ch ) ) |