Metamath Proof Explorer


Theorem cbv2w

Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbv2w.1
|- F/ x ph
cbv2w.2
|- F/ y ph
cbv2w.3
|- ( ph -> F/ y ps )
cbv2w.4
|- ( ph -> F/ x ch )
cbv2w.5
|- ( ph -> ( x = y -> ( ps <-> ch ) ) )
Assertion cbv2w
|- ( ph -> ( A. x ps <-> A. y ch ) )

Proof

Step Hyp Ref Expression
1 cbv2w.1
 |-  F/ x ph
2 cbv2w.2
 |-  F/ y ph
3 cbv2w.3
 |-  ( ph -> F/ y ps )
4 cbv2w.4
 |-  ( ph -> F/ x ch )
5 cbv2w.5
 |-  ( ph -> ( x = y -> ( ps <-> ch ) ) )
6 biimp
 |-  ( ( ps <-> ch ) -> ( ps -> ch ) )
7 5 6 syl6
 |-  ( ph -> ( x = y -> ( ps -> ch ) ) )
8 1 2 3 4 7 cbv1v
 |-  ( ph -> ( A. x ps -> A. y ch ) )
9 equcomi
 |-  ( y = x -> x = y )
10 biimpr
 |-  ( ( ps <-> ch ) -> ( ch -> ps ) )
11 9 5 10 syl56
 |-  ( ph -> ( y = x -> ( ch -> ps ) ) )
12 2 1 4 3 11 cbv1v
 |-  ( ph -> ( A. y ch -> A. x ps ) )
13 8 12 impbid
 |-  ( ph -> ( A. x ps <-> A. y ch ) )