Metamath Proof Explorer


Theorem cbvab

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Usage of the weaker cbvabw and cbvabv are preferred. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 16-Nov-2019) (New usage is discouraged.)

Ref Expression
Hypotheses cbvab.1
|- F/ y ph
cbvab.2
|- F/ x ps
cbvab.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvab
|- { x | ph } = { y | ps }

Proof

Step Hyp Ref Expression
1 cbvab.1
 |-  F/ y ph
2 cbvab.2
 |-  F/ x ps
3 cbvab.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 sbco2
 |-  ( [ z / y ] [ y / x ] ph <-> [ z / x ] ph )
5 2 3 sbie
 |-  ( [ y / x ] ph <-> ps )
6 5 sbbii
 |-  ( [ z / y ] [ y / x ] ph <-> [ z / y ] ps )
7 4 6 bitr3i
 |-  ( [ z / x ] ph <-> [ z / y ] ps )
8 df-clab
 |-  ( z e. { x | ph } <-> [ z / x ] ph )
9 df-clab
 |-  ( z e. { y | ps } <-> [ z / y ] ps )
10 7 8 9 3bitr4i
 |-  ( z e. { x | ph } <-> z e. { y | ps } )
11 10 eqriv
 |-  { x | ph } = { y | ps }