Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Usage of the weaker cbvabw and cbvabv are preferred. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 16-Nov-2019) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvab.1 | |- F/ y ph |
|
cbvab.2 | |- F/ x ps |
||
cbvab.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | cbvab | |- { x | ph } = { y | ps } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvab.1 | |- F/ y ph |
|
2 | cbvab.2 | |- F/ x ps |
|
3 | cbvab.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
4 | 1 | sbco2 | |- ( [ z / y ] [ y / x ] ph <-> [ z / x ] ph ) |
5 | 2 3 | sbie | |- ( [ y / x ] ph <-> ps ) |
6 | 5 | sbbii | |- ( [ z / y ] [ y / x ] ph <-> [ z / y ] ps ) |
7 | 4 6 | bitr3i | |- ( [ z / x ] ph <-> [ z / y ] ps ) |
8 | df-clab | |- ( z e. { x | ph } <-> [ z / x ] ph ) |
|
9 | df-clab | |- ( z e. { y | ps } <-> [ z / y ] ps ) |
|
10 | 7 8 9 | 3bitr4i | |- ( z e. { x | ph } <-> z e. { y | ps } ) |
11 | 10 | eqriv | |- { x | ph } = { y | ps } |