Metamath Proof Explorer


Theorem cbvabw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvab with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvabw.1
|- F/ y ph
cbvabw.2
|- F/ x ps
cbvabw.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvabw
|- { x | ph } = { y | ps }

Proof

Step Hyp Ref Expression
1 cbvabw.1
 |-  F/ y ph
2 cbvabw.2
 |-  F/ x ps
3 cbvabw.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 sbievg
 |-  ( [ z / x ] ph <-> [ z / y ] ps )
5 df-clab
 |-  ( z e. { x | ph } <-> [ z / x ] ph )
6 df-clab
 |-  ( z e. { y | ps } <-> [ z / y ] ps )
7 4 5 6 3bitr4i
 |-  ( z e. { x | ph } <-> z e. { y | ps } )
8 7 eqriv
 |-  { x | ph } = { y | ps }