Step |
Hyp |
Ref |
Expression |
1 |
|
cbvabw.1 |
|- F/ y ph |
2 |
|
cbvabw.2 |
|- F/ x ps |
3 |
|
cbvabw.3 |
|- ( x = y -> ( ph <-> ps ) ) |
4 |
1
|
sbco2v |
|- ( [ z / y ] [ y / x ] ph <-> [ z / x ] ph ) |
5 |
2 3
|
sbiev |
|- ( [ y / x ] ph <-> ps ) |
6 |
5
|
sbbii |
|- ( [ z / y ] [ y / x ] ph <-> [ z / y ] ps ) |
7 |
4 6
|
bitr3i |
|- ( [ z / x ] ph <-> [ z / y ] ps ) |
8 |
|
df-clab |
|- ( z e. { x | ph } <-> [ z / x ] ph ) |
9 |
|
df-clab |
|- ( z e. { y | ps } <-> [ z / y ] ps ) |
10 |
7 8 9
|
3bitr4i |
|- ( z e. { x | ph } <-> z e. { y | ps } ) |
11 |
10
|
eqriv |
|- { x | ph } = { y | ps } |