Metamath Proof Explorer


Theorem cbvabwOLD

Description: Obsolete version of cbvabw as of 23-May-2024. (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbvabw.1
|- F/ y ph
cbvabw.2
|- F/ x ps
cbvabw.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvabwOLD
|- { x | ph } = { y | ps }

Proof

Step Hyp Ref Expression
1 cbvabw.1
 |-  F/ y ph
2 cbvabw.2
 |-  F/ x ps
3 cbvabw.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 sbco2v
 |-  ( [ z / y ] [ y / x ] ph <-> [ z / x ] ph )
5 2 3 sbiev
 |-  ( [ y / x ] ph <-> ps )
6 5 sbbii
 |-  ( [ z / y ] [ y / x ] ph <-> [ z / y ] ps )
7 4 6 bitr3i
 |-  ( [ z / x ] ph <-> [ z / y ] ps )
8 df-clab
 |-  ( z e. { x | ph } <-> [ z / x ] ph )
9 df-clab
 |-  ( z e. { y | ps } <-> [ z / y ] ps )
10 7 8 9 3bitr4i
 |-  ( z e. { x | ph } <-> z e. { y | ps } )
11 10 eqriv
 |-  { x | ph } = { y | ps }