Metamath Proof Explorer


Theorem cbvaev

Description: Change bound variable in an equality with a disjoint variable condition. Instance of aev . (Contributed by NM, 22-Jul-2015) (Revised by BJ, 18-Jun-2019)

Ref Expression
Assertion cbvaev
|- ( A. x x = y -> A. z z = y )

Proof

Step Hyp Ref Expression
1 ax7
 |-  ( x = t -> ( x = y -> t = y ) )
2 1 cbvalivw
 |-  ( A. x x = y -> A. t t = y )
3 ax7
 |-  ( t = z -> ( t = y -> z = y ) )
4 3 cbvalivw
 |-  ( A. t t = y -> A. z z = y )
5 2 4 syl
 |-  ( A. x x = y -> A. z z = y )