Metamath Proof Explorer


Theorem cbval2

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbval2v if possible. (Contributed by NM, 22-Dec-2003) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 11-Sep-2023) (New usage is discouraged.)

Ref Expression
Hypotheses cbval2.1
|- F/ z ph
cbval2.2
|- F/ w ph
cbval2.3
|- F/ x ps
cbval2.4
|- F/ y ps
cbval2.5
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
Assertion cbval2
|- ( A. x A. y ph <-> A. z A. w ps )

Proof

Step Hyp Ref Expression
1 cbval2.1
 |-  F/ z ph
2 cbval2.2
 |-  F/ w ph
3 cbval2.3
 |-  F/ x ps
4 cbval2.4
 |-  F/ y ps
5 cbval2.5
 |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
6 1 nfal
 |-  F/ z A. y ph
7 3 nfal
 |-  F/ x A. w ps
8 nfv
 |-  F/ y x = z
9 nfv
 |-  F/ w x = z
10 2 a1i
 |-  ( x = z -> F/ w ph )
11 4 a1i
 |-  ( x = z -> F/ y ps )
12 5 ex
 |-  ( x = z -> ( y = w -> ( ph <-> ps ) ) )
13 8 9 10 11 12 cbv2
 |-  ( x = z -> ( A. y ph <-> A. w ps ) )
14 6 7 13 cbval
 |-  ( A. x A. y ph <-> A. z A. w ps )