Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
cbval2v
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbval2 with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 22-Dec-2003) (Revised by BJ , 16-Jun-2019) (Proof shortened by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbval2v.1
|- F/ z ph
cbval2v.2
|- F/ w ph
cbval2v.3
|- F/ x ps
cbval2v.4
|- F/ y ps
cbval2v.5
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
Assertion
cbval2v
|- ( A. x A. y ph <-> A. z A. w ps )
Proof
Step
Hyp
Ref
Expression
1
cbval2v.1
|- F/ z ph
2
cbval2v.2
|- F/ w ph
3
cbval2v.3
|- F/ x ps
4
cbval2v.4
|- F/ y ps
5
cbval2v.5
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
6
1
nfal
|- F/ z A. y ph
7
3
nfal
|- F/ x A. w ps
8
nfv
|- F/ y x = z
9
nfv
|- F/ w x = z
10
2
a1i
|- ( x = z -> F/ w ph )
11
4
a1i
|- ( x = z -> F/ y ps )
12
5
ex
|- ( x = z -> ( y = w -> ( ph <-> ps ) ) )
13
8 9 10 11 12
cbv2w
|- ( x = z -> ( A. y ph <-> A. w ps ) )
14
6 7 13
cbvalv1
|- ( A. x A. y ph <-> A. z A. w ps )