Metamath Proof Explorer


Theorem cbval2v

Description: Rule used to change bound variables, using implicit substitution. Version of cbval2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 22-Dec-2003) (Revised by BJ, 16-Jun-2019) (Proof shortened by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbval2v.1
|- F/ z ph
cbval2v.2
|- F/ w ph
cbval2v.3
|- F/ x ps
cbval2v.4
|- F/ y ps
cbval2v.5
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
Assertion cbval2v
|- ( A. x A. y ph <-> A. z A. w ps )

Proof

Step Hyp Ref Expression
1 cbval2v.1
 |-  F/ z ph
2 cbval2v.2
 |-  F/ w ph
3 cbval2v.3
 |-  F/ x ps
4 cbval2v.4
 |-  F/ y ps
5 cbval2v.5
 |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
6 1 nfal
 |-  F/ z A. y ph
7 3 nfal
 |-  F/ x A. w ps
8 nfv
 |-  F/ y x = z
9 nfv
 |-  F/ w x = z
10 2 a1i
 |-  ( x = z -> F/ w ph )
11 4 a1i
 |-  ( x = z -> F/ y ps )
12 5 ex
 |-  ( x = z -> ( y = w -> ( ph <-> ps ) ) )
13 8 9 10 11 12 cbv2w
 |-  ( x = z -> ( A. y ph <-> A. w ps ) )
14 6 7 13 cbvalv1
 |-  ( A. x A. y ph <-> A. z A. w ps )