Metamath Proof Explorer


Theorem cbvald

Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim . Usage of this theorem is discouraged because it depends on ax-13 . See cbvaldw for a version with x , y disjoint, not depending on ax-13 . (Contributed by NM, 2-Jan-2002) (Revised by Mario Carneiro, 6-Oct-2016) (Revised by Wolf Lammen, 13-May-2018) (New usage is discouraged.)

Ref Expression
Hypotheses cbvald.1
|- F/ y ph
cbvald.2
|- ( ph -> F/ y ps )
cbvald.3
|- ( ph -> ( x = y -> ( ps <-> ch ) ) )
Assertion cbvald
|- ( ph -> ( A. x ps <-> A. y ch ) )

Proof

Step Hyp Ref Expression
1 cbvald.1
 |-  F/ y ph
2 cbvald.2
 |-  ( ph -> F/ y ps )
3 cbvald.3
 |-  ( ph -> ( x = y -> ( ps <-> ch ) ) )
4 nfv
 |-  F/ x ph
5 nfvd
 |-  ( ph -> F/ x ch )
6 4 1 2 5 3 cbv2
 |-  ( ph -> ( A. x ps <-> A. y ch ) )