Metamath Proof Explorer


Theorem cbvaldw

Description: Deduction used to change bound variables, using implicit substitution. Version of cbvald with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 2-Jan-2002) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvaldw.1
|- F/ y ph
cbvaldw.2
|- ( ph -> F/ y ps )
cbvaldw.3
|- ( ph -> ( x = y -> ( ps <-> ch ) ) )
Assertion cbvaldw
|- ( ph -> ( A. x ps <-> A. y ch ) )

Proof

Step Hyp Ref Expression
1 cbvaldw.1
 |-  F/ y ph
2 cbvaldw.2
 |-  ( ph -> F/ y ps )
3 cbvaldw.3
 |-  ( ph -> ( x = y -> ( ps <-> ch ) ) )
4 nfv
 |-  F/ x ph
5 nfvd
 |-  ( ph -> F/ x ch )
6 4 1 2 5 3 cbv2w
 |-  ( ph -> ( A. x ps <-> A. y ch ) )