Metamath Proof Explorer


Theorem cbvaliw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by NM, 19-Apr-2017)

Ref Expression
Hypotheses cbvaliw.1
|- ( A. x ph -> A. y A. x ph )
cbvaliw.2
|- ( -. ps -> A. x -. ps )
cbvaliw.3
|- ( x = y -> ( ph -> ps ) )
Assertion cbvaliw
|- ( A. x ph -> A. y ps )

Proof

Step Hyp Ref Expression
1 cbvaliw.1
 |-  ( A. x ph -> A. y A. x ph )
2 cbvaliw.2
 |-  ( -. ps -> A. x -. ps )
3 cbvaliw.3
 |-  ( x = y -> ( ph -> ps ) )
4 2 3 spimw
 |-  ( A. x ph -> ps )
5 1 4 alrimih
 |-  ( A. x ph -> A. y ps )