Metamath Proof Explorer


Theorem cbvcsb

Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvcsbw when possible. (Contributed by Jeff Hankins, 13-Sep-2009) (Revised by Mario Carneiro, 11-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvcsb.1
|- F/_ y C
cbvcsb.2
|- F/_ x D
cbvcsb.3
|- ( x = y -> C = D )
Assertion cbvcsb
|- [_ A / x ]_ C = [_ A / y ]_ D

Proof

Step Hyp Ref Expression
1 cbvcsb.1
 |-  F/_ y C
2 cbvcsb.2
 |-  F/_ x D
3 cbvcsb.3
 |-  ( x = y -> C = D )
4 1 nfcri
 |-  F/ y z e. C
5 2 nfcri
 |-  F/ x z e. D
6 3 eleq2d
 |-  ( x = y -> ( z e. C <-> z e. D ) )
7 4 5 6 cbvsbc
 |-  ( [. A / x ]. z e. C <-> [. A / y ]. z e. D )
8 7 abbii
 |-  { z | [. A / x ]. z e. C } = { z | [. A / y ]. z e. D }
9 df-csb
 |-  [_ A / x ]_ C = { z | [. A / x ]. z e. C }
10 df-csb
 |-  [_ A / y ]_ D = { z | [. A / y ]. z e. D }
11 8 9 10 3eqtr4i
 |-  [_ A / x ]_ C = [_ A / y ]_ D