Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvcsbw when possible. (Contributed by Jeff Hankins, 13-Sep-2009) (Revised by Mario Carneiro, 11-Dec-2016) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvcsb.1 | |- F/_ y C |
|
cbvcsb.2 | |- F/_ x D |
||
cbvcsb.3 | |- ( x = y -> C = D ) |
||
Assertion | cbvcsb | |- [_ A / x ]_ C = [_ A / y ]_ D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsb.1 | |- F/_ y C |
|
2 | cbvcsb.2 | |- F/_ x D |
|
3 | cbvcsb.3 | |- ( x = y -> C = D ) |
|
4 | 1 | nfcri | |- F/ y z e. C |
5 | 2 | nfcri | |- F/ x z e. D |
6 | 3 | eleq2d | |- ( x = y -> ( z e. C <-> z e. D ) ) |
7 | 4 5 6 | cbvsbc | |- ( [. A / x ]. z e. C <-> [. A / y ]. z e. D ) |
8 | 7 | abbii | |- { z | [. A / x ]. z e. C } = { z | [. A / y ]. z e. D } |
9 | df-csb | |- [_ A / x ]_ C = { z | [. A / x ]. z e. C } |
|
10 | df-csb | |- [_ A / y ]_ D = { z | [. A / y ]. z e. D } |
|
11 | 8 9 10 | 3eqtr4i | |- [_ A / x ]_ C = [_ A / y ]_ D |