Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008) (Revised by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvcsbv.1 | |- ( x = y -> B = C ) |
|
| Assertion | cbvcsbv | |- [_ A / x ]_ B = [_ A / y ]_ C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbv.1 | |- ( x = y -> B = C ) |
|
| 2 | 1 | eleq2d | |- ( x = y -> ( z e. B <-> z e. C ) ) |
| 3 | 2 | cbvsbcvw | |- ( [. A / x ]. z e. B <-> [. A / y ]. z e. C ) |
| 4 | 3 | abbii | |- { z | [. A / x ]. z e. B } = { z | [. A / y ]. z e. C } |
| 5 | df-csb | |- [_ A / x ]_ B = { z | [. A / x ]. z e. B } |
|
| 6 | df-csb | |- [_ A / y ]_ C = { z | [. A / y ]. z e. C } |
|
| 7 | 4 5 6 | 3eqtr4i | |- [_ A / x ]_ B = [_ A / y ]_ C |