Metamath Proof Explorer


Theorem cbvcsbv

Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis cbvcsbv.1
|- ( x = y -> B = C )
Assertion cbvcsbv
|- [_ A / x ]_ B = [_ A / y ]_ C

Proof

Step Hyp Ref Expression
1 cbvcsbv.1
 |-  ( x = y -> B = C )
2 1 eleq2d
 |-  ( x = y -> ( z e. B <-> z e. C ) )
3 2 cbvsbcvw
 |-  ( [. A / x ]. z e. B <-> [. A / y ]. z e. C )
4 3 abbii
 |-  { z | [. A / x ]. z e. B } = { z | [. A / y ]. z e. C }
5 df-csb
 |-  [_ A / x ]_ B = { z | [. A / x ]. z e. B }
6 df-csb
 |-  [_ A / y ]_ C = { z | [. A / y ]. z e. C }
7 4 5 6 3eqtr4i
 |-  [_ A / x ]_ B = [_ A / y ]_ C