Metamath Proof Explorer


Theorem cbvcsbw

Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on A . Version of cbvcsb with a disjoint variable condition, which does not require ax-13 . (Contributed by Jeff Hankins, 13-Sep-2009) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvcsbw.1
|- F/_ y C
cbvcsbw.2
|- F/_ x D
cbvcsbw.3
|- ( x = y -> C = D )
Assertion cbvcsbw
|- [_ A / x ]_ C = [_ A / y ]_ D

Proof

Step Hyp Ref Expression
1 cbvcsbw.1
 |-  F/_ y C
2 cbvcsbw.2
 |-  F/_ x D
3 cbvcsbw.3
 |-  ( x = y -> C = D )
4 1 nfcri
 |-  F/ y z e. C
5 2 nfcri
 |-  F/ x z e. D
6 3 eleq2d
 |-  ( x = y -> ( z e. C <-> z e. D ) )
7 4 5 6 cbvsbcw
 |-  ( [. A / x ]. z e. C <-> [. A / y ]. z e. D )
8 7 abbii
 |-  { z | [. A / x ]. z e. C } = { z | [. A / y ]. z e. D }
9 df-csb
 |-  [_ A / x ]_ C = { z | [. A / x ]. z e. C }
10 df-csb
 |-  [_ A / y ]_ D = { z | [. A / y ]. z e. D }
11 8 9 10 3eqtr4i
 |-  [_ A / x ]_ C = [_ A / y ]_ D