Metamath Proof Explorer


Theorem cbveu

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbveuw , cbveuvw when possible. (Contributed by NM, 25-Nov-1994) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbveu.1
|- F/ y ph
cbveu.2
|- F/ x ps
cbveu.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbveu
|- ( E! x ph <-> E! y ps )

Proof

Step Hyp Ref Expression
1 cbveu.1
 |-  F/ y ph
2 cbveu.2
 |-  F/ x ps
3 cbveu.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 sb8eu
 |-  ( E! x ph <-> E! y [ y / x ] ph )
5 2 3 sbie
 |-  ( [ y / x ] ph <-> ps )
6 5 eubii
 |-  ( E! y [ y / x ] ph <-> E! y ps )
7 4 6 bitri
 |-  ( E! x ph <-> E! y ps )