Metamath Proof Explorer


Theorem cbveuALT

Description: Alternative proof of cbveu . Since df-eu combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbveu.1
|- F/ y ph
cbveu.2
|- F/ x ps
cbveu.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbveuALT
|- ( E! x ph <-> E! y ps )

Proof

Step Hyp Ref Expression
1 cbveu.1
 |-  F/ y ph
2 cbveu.2
 |-  F/ x ps
3 cbveu.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 cbvex
 |-  ( E. x ph <-> E. y ps )
5 1 2 3 cbvmo
 |-  ( E* x ph <-> E* y ps )
6 4 5 anbi12i
 |-  ( ( E. x ph /\ E* x ph ) <-> ( E. y ps /\ E* y ps ) )
7 df-eu
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )
8 df-eu
 |-  ( E! y ps <-> ( E. y ps /\ E* y ps ) )
9 6 7 8 3bitr4i
 |-  ( E! x ph <-> E! y ps )