Description: Alternative proof of cbveu . Since df-eu combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbveu.1 | |- F/ y ph |
|
| cbveu.2 | |- F/ x ps |
||
| cbveu.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbveuALT | |- ( E! x ph <-> E! y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbveu.1 | |- F/ y ph |
|
| 2 | cbveu.2 | |- F/ x ps |
|
| 3 | cbveu.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | 1 2 3 | cbvex | |- ( E. x ph <-> E. y ps ) |
| 5 | 1 2 3 | cbvmo | |- ( E* x ph <-> E* y ps ) |
| 6 | 4 5 | anbi12i | |- ( ( E. x ph /\ E* x ph ) <-> ( E. y ps /\ E* y ps ) ) |
| 7 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
| 8 | df-eu | |- ( E! y ps <-> ( E. y ps /\ E* y ps ) ) |
|
| 9 | 6 7 8 | 3bitr4i | |- ( E! x ph <-> E! y ps ) |