Metamath Proof Explorer


Theorem cbveuvw

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbveuvw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbveuvw
|- ( E! x ph <-> E! y ps )

Proof

Step Hyp Ref Expression
1 cbveuvw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 1 cbvexvw
 |-  ( E. x ph <-> E. y ps )
3 1 cbvmovw
 |-  ( E* x ph <-> E* y ps )
4 2 3 anbi12i
 |-  ( ( E. x ph /\ E* x ph ) <-> ( E. y ps /\ E* y ps ) )
5 df-eu
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )
6 df-eu
 |-  ( E! y ps <-> ( E. y ps /\ E* y ps ) )
7 4 5 6 3bitr4i
 |-  ( E! x ph <-> E! y ps )