Metamath Proof Explorer


Theorem cbveuwOLD

Description: Obsolete version of cbveuw as of 23-May-2024. (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbveuwOLD.1
|- F/ y ph
cbveuwOLD.2
|- F/ x ps
cbveuwOLD.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbveuwOLD
|- ( E! x ph <-> E! y ps )

Proof

Step Hyp Ref Expression
1 cbveuwOLD.1
 |-  F/ y ph
2 cbveuwOLD.2
 |-  F/ x ps
3 cbveuwOLD.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 sb8euv
 |-  ( E! x ph <-> E! y [ y / x ] ph )
5 2 3 sbiev
 |-  ( [ y / x ] ph <-> ps )
6 5 eubii
 |-  ( E! y [ y / x ] ph <-> E! y ps )
7 4 6 bitri
 |-  ( E! x ph <-> E! y ps )