Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out cbvexvw , cbvexv1 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbval.1 | |- F/ y ph | |
| cbval.2 | |- F/ x ps | ||
| cbval.3 | |- ( x = y -> ( ph <-> ps ) ) | ||
| Assertion | cbvex | |- ( E. x ph <-> E. y ps ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbval.1 | |- F/ y ph | |
| 2 | cbval.2 | |- F/ x ps | |
| 3 | cbval.3 | |- ( x = y -> ( ph <-> ps ) ) | |
| 4 | 1 | nfn | |- F/ y -. ph | 
| 5 | 2 | nfn | |- F/ x -. ps | 
| 6 | 3 | notbid | |- ( x = y -> ( -. ph <-> -. ps ) ) | 
| 7 | 4 5 6 | cbval | |- ( A. x -. ph <-> A. y -. ps ) | 
| 8 | alnex | |- ( A. x -. ph <-> -. E. x ph ) | |
| 9 | alnex | |- ( A. y -. ps <-> -. E. y ps ) | |
| 10 | 7 8 9 | 3bitr3i | |- ( -. E. x ph <-> -. E. y ps ) | 
| 11 | 10 | con4bii | |- ( E. x ph <-> E. y ps ) |