Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex2v if possible. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 16-Jun-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbval2.1 | |- F/ z ph |
|
| cbval2.2 | |- F/ w ph |
||
| cbval2.3 | |- F/ x ps |
||
| cbval2.4 | |- F/ y ps |
||
| cbval2.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
||
| Assertion | cbvex2 | |- ( E. x E. y ph <-> E. z E. w ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2.1 | |- F/ z ph |
|
| 2 | cbval2.2 | |- F/ w ph |
|
| 3 | cbval2.3 | |- F/ x ps |
|
| 4 | cbval2.4 | |- F/ y ps |
|
| 5 | cbval2.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| 6 | 1 | nfn | |- F/ z -. ph |
| 7 | 2 | nfn | |- F/ w -. ph |
| 8 | 3 | nfn | |- F/ x -. ps |
| 9 | 4 | nfn | |- F/ y -. ps |
| 10 | 5 | notbid | |- ( ( x = z /\ y = w ) -> ( -. ph <-> -. ps ) ) |
| 11 | 6 7 8 9 10 | cbval2 | |- ( A. x A. y -. ph <-> A. z A. w -. ps ) |
| 12 | 2nexaln | |- ( -. E. x E. y ph <-> A. x A. y -. ph ) |
|
| 13 | 2nexaln | |- ( -. E. z E. w ps <-> A. z A. w -. ps ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( -. E. x E. y ph <-> -. E. z E. w ps ) |
| 15 | 14 | con4bii | |- ( E. x E. y ph <-> E. z E. w ps ) |