Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex2v if possible. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 16-Jun-2019) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbval2.1 | |- F/ z ph |
|
cbval2.2 | |- F/ w ph |
||
cbval2.3 | |- F/ x ps |
||
cbval2.4 | |- F/ y ps |
||
cbval2.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
||
Assertion | cbvex2 | |- ( E. x E. y ph <-> E. z E. w ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbval2.1 | |- F/ z ph |
|
2 | cbval2.2 | |- F/ w ph |
|
3 | cbval2.3 | |- F/ x ps |
|
4 | cbval2.4 | |- F/ y ps |
|
5 | cbval2.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
6 | 1 | nfn | |- F/ z -. ph |
7 | 2 | nfn | |- F/ w -. ph |
8 | 3 | nfn | |- F/ x -. ps |
9 | 4 | nfn | |- F/ y -. ps |
10 | 5 | notbid | |- ( ( x = z /\ y = w ) -> ( -. ph <-> -. ps ) ) |
11 | 6 7 8 9 10 | cbval2 | |- ( A. x A. y -. ph <-> A. z A. w -. ps ) |
12 | 2nexaln | |- ( -. E. x E. y ph <-> A. x A. y -. ph ) |
|
13 | 2nexaln | |- ( -. E. z E. w ps <-> A. z A. w -. ps ) |
|
14 | 11 12 13 | 3bitr4i | |- ( -. E. x E. y ph <-> -. E. z E. w ps ) |
15 | 14 | con4bii | |- ( E. x E. y ph <-> E. z E. w ps ) |