Metamath Proof Explorer


Theorem cbvex2v

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Sep-2003) (Revised by BJ, 16-Jun-2019)

Ref Expression
Hypotheses cbval2v.1
|- F/ z ph
cbval2v.2
|- F/ w ph
cbval2v.3
|- F/ x ps
cbval2v.4
|- F/ y ps
cbval2v.5
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
Assertion cbvex2v
|- ( E. x E. y ph <-> E. z E. w ps )

Proof

Step Hyp Ref Expression
1 cbval2v.1
 |-  F/ z ph
2 cbval2v.2
 |-  F/ w ph
3 cbval2v.3
 |-  F/ x ps
4 cbval2v.4
 |-  F/ y ps
5 cbval2v.5
 |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
6 1 nfn
 |-  F/ z -. ph
7 2 nfn
 |-  F/ w -. ph
8 3 nfn
 |-  F/ x -. ps
9 4 nfn
 |-  F/ y -. ps
10 5 notbid
 |-  ( ( x = z /\ y = w ) -> ( -. ph <-> -. ps ) )
11 6 7 8 9 10 cbval2v
 |-  ( A. x A. y -. ph <-> A. z A. w -. ps )
12 2nexaln
 |-  ( -. E. x E. y ph <-> A. x A. y -. ph )
13 2nexaln
 |-  ( -. E. z E. w ps <-> A. z A. w -. ps )
14 11 12 13 3bitr4i
 |-  ( -. E. x E. y ph <-> -. E. z E. w ps )
15 14 con4bii
 |-  ( E. x E. y ph <-> E. z E. w ps )