Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvex4vw if possible. (Contributed by NM, 26-Jul-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvex4v.1 | |- ( ( x = v /\ y = u ) -> ( ph <-> ps ) ) |
|
cbvex4v.2 | |- ( ( z = f /\ w = g ) -> ( ps <-> ch ) ) |
||
Assertion | cbvex4v | |- ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex4v.1 | |- ( ( x = v /\ y = u ) -> ( ph <-> ps ) ) |
|
2 | cbvex4v.2 | |- ( ( z = f /\ w = g ) -> ( ps <-> ch ) ) |
|
3 | 1 | 2exbidv | |- ( ( x = v /\ y = u ) -> ( E. z E. w ph <-> E. z E. w ps ) ) |
4 | 3 | cbvex2vv | |- ( E. x E. y E. z E. w ph <-> E. v E. u E. z E. w ps ) |
5 | 2 | cbvex2vv | |- ( E. z E. w ps <-> E. f E. g ch ) |
6 | 5 | 2exbii | |- ( E. v E. u E. z E. w ps <-> E. v E. u E. f E. g ch ) |
7 | 4 6 | bitri | |- ( E. x E. y E. z E. w ph <-> E. v E. u E. f E. g ch ) |