Metamath Proof Explorer


Theorem cbvexdvaw

Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017) (Revised by Gino Giotto, 10-Jan-2024) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024)

Ref Expression
Hypothesis cbvaldvaw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvexdvaw
|- ( ph -> ( E. x ps <-> E. y ch ) )

Proof

Step Hyp Ref Expression
1 cbvaldvaw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 notbid
 |-  ( ( ph /\ x = y ) -> ( -. ps <-> -. ch ) )
3 2 cbvaldvaw
 |-  ( ph -> ( A. x -. ps <-> A. y -. ch ) )
4 alnex
 |-  ( A. x -. ps <-> -. E. x ps )
5 alnex
 |-  ( A. y -. ch <-> -. E. y ch )
6 3 4 5 3bitr3g
 |-  ( ph -> ( -. E. x ps <-> -. E. y ch ) )
7 6 con4bid
 |-  ( ph -> ( E. x ps <-> E. y ch ) )